• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Étude d'un écoulement en circulation naturelle d'hélium diphasique en régime transitoire / Study of two-phase boiling helium natural circulation loops in transient regime

Furci, Hernan 13 November 2015 (has links)
Les boucles de circulation naturelle d'hélium diphasiques sont utilisées comme systèmes de refroidissement d'aimants supraconducteurs de grande envergure, vus leurs avantages inhérents de sûreté et d'entretien. Des exemples sont le détecteur CMS au CERN (déjà en opération) ou les aimants du spectromètre R3B-GLAD au GSI (en installation). Une des préoccupations majeures lors du refroidissement par ébullition est la crise d'ébullition : la dégradation soudaine du transfert de chaleur pariétal au-delà d'une certaine valeur de flux de chaleur, dénommée critique. L'augmentation de température de paroi qui en résulte peut entraîner la perte de l'état supraconducteur de l'aimant.Les boucles de circulation naturelle à l'hélium ont déjà été étudiées expérimentalement et numériquement en régime permanent, spécialement en régimes pré-critiques (ébullition nucléée). Les travaux sur les transferts de masse et de chaleur en hélium en ébullition en régime transitoire présents dans la littérature ciblent principalement des systèmes de petites dimensions, des canaux très étroits ou trop courts, ou l'ébullition en bain. Bien que des comportements qualitativement similaires sont attendus, l'extrapolation de ces résultats à une boucle de circulation naturelle n'est pas évident, si possible. C'est pourquoi une étude particulière du comportement thermohydraulique transitoire de boucles d'hélium en circulation naturelle, lors d'une augmentation soudaine de la charge thermique, est nécessaire. Une partie de cette étude consiste en des expériences sur une boucle d'hélium diphasique en circulation naturelle de 2 m de haut, à 4,2 K. Deux sections chauffées verticales de diamètre différent (10 et 6 mm) et d'environ 1 m de longueur ont été testées. Les transitoires sont induits par une marche soudaine de puissance. Deux types de condition initiale ont été considérés : statique (sans puissance initiale), et en équilibre dynamique (puissance initiale non-nulle). L'évolution de la température de paroi le long de la section, le débit massique et la perte de charge a été mesurée. Parmi d'autres phénomènes, un fort intérêt a été porté au début de la crise d'ébullition. Les valeurs limites de flux de chaleur final auxquelles la crise arrive ont été déterminées. D'un côté, on a observé que la crise peut avoir lieu de façon temporaire ou permanente à une puissance appréciablement plus faible qu'en régime permanente. De l'autre côté, l'augmentation de la circulation initiale, à travers le flux de chaleur initial, peut inhiber partiellement ou totalement cette crise d'ébullition prématurée. On a déterminé que cette dégradation du transfert de chaleur est l'issu de deux phénomènes en compétition, véritablement inhérents à la circulation naturelle : une étape initiale d'accumulation uniforme de vapeur, avec inversion ou diminution de la vitesse d'entrée, et l'établissement ultérieur de la circulation, avec le transit d'un front froid depuis l'entrée. Une analyse semi-empirique nous a permis de déterminer un critère, basé sur l'évolution dynamique du profile spatial du titre massique, pour prédire le déclenchement de la crise. Néanmoins, il est nécessaire de connaître à priori l'évolution du débit massique pour pouvoir appliquer ce critère. La dernière partie de ce travail est dévouée à la production et validation de modèles et outils de calcul pour la simulation du comportement thermohydraulique d'un tel système. Deux options de modélisation sont présentées. L'une est une simplification des équations du modèle homogène 1D des écoulements diphasiques (mise en place en COMSOL) ; l'autre reprend le modèle homogène tel quel (programmé en C). Les simulations d'évolution du débit massique sont en assez bon accord avec les mesures, à l'exception d'un léger déphasage temporel. Ceci pourrait être dû à la combinaison d'un retard de l'instrumentation pour la mesure du débit et de l'inexactitude des hypothèses de base du modèle homogène lors de transitoires très violents. / Boiling helium natural circulation loops are used as the cooling system of large superconducting magnets because of their inherent safety and maintenance advantages. Examples are the cooling systems of the CMS detector solenoid magnet at CERN (already in operation) or the R3B-GLAD spectrometer magnet at GSI (in installation phase). A major concern in boiling cooling systems is that of boiling crisis: a sudden deterioration of the wall heat transfer takes place when the surface heat flux exceeds a certain value, called the critical heat flux (CHF). The resulting high temperatures on the wall could ultimately entail the loss of superconducting state of the magnet.Helium natural circulation loops have already been studied experimentally and numerically in steady state, especially in the pre-critical heat and mass transfer regimes (nucleate boiling). Works on transient boiling heat and mass transfer in helium present in the literature are mostly focused on small systems, very narrow channels, too short pipes or pool boiling. Although it is expected to find qualitative similarities with already observed behavior, the extrapolation to a natural circulation loop is not easy, if even possible. Hence the need for a particular study on the transient thermohydraulic behavior of helium natural circulation loops, after sudden increases in the heat load of the circuit.A part of this study consists of experiments conducted in a 2-meter high two-phase helium natural circulation loop at 4.2 K temperature. Two vertical heated sections with different diameters (10 and 6 mm) and around 1 m length were tested. Heat load transients were driven by a step-pulsed heat load. Transients with two types of initial conditions have been studied: static loop (no initial power applied) and in-dynamic-equilibrium loop (non-zero initial power applied). The evolutions of wall temperature along the heated section, total mass flow rate and pressure drop were measured. Among other phenomena, the nature of the onset of boiling crisis has received a special attention. The values of final heat flux limits for its occurrence have been determined. On the one hand, we observed that boiling crisis can take place in temporary or stable fashion at power significantly lower than in steady state. On the other hand, the increase of initial circulation, by raising initial heat flux, can inhibit partially or completely this power-premature boiling crisis. We could determine that this heat transfer deterioration is the result of two competing phenomena, veritably inherent to the natural circulation feature of the system: an initial stage of uniform vapor accumulation with inlet back-flow or velocity reduction, and the ulterior onset of circulation with the transit of a cold front from the entrance. A semi-empirical analysis of data allowed determining a criterion, based on the dynamic evolution of the quality profile in the section, to predict the incipience of boiling crisis. It became evident that it is necessary to know how the mass flow rate of the system is going to evolve, in order to apply the mentioned criterion.Hence, the other part of this work is aimed to the production and validation of models and calculation tools in order to simulate the thermohydraulic behavior of a two-phase helium natural circulation loop. Two modeling options are proposed. One of them consists of a simplification of the 1D two-phase homogeneous model equations (implemented in COMSOL) and the other of their full version (coded in C language). The simulated mass flow rate represents reasonably well the measured evolution except for a relatively small time phase-shift. This could be due to a combination of the delay of flow-metering instrumentation with the inaccuracy of the basic homogeneous model assumptions during violent transients.

Page generated in 0.0903 seconds