Spelling suggestions: "subject:"cisplatin."" "subject:"displatin.""
201 |
Near Infrared-Sensitive Nanoparticles for Targeted Drug DeliveryTan, Mei Chee, Ying, Jackie Y., Chow, Gan-Moog 01 1900 (has links)
The invasive nature and undesirable side-effects related to conventional cancer therapy, such as surgery and chemotherapy, have led to the development of novel drug delivery systems (DDS). A minimally invasive DDS using near-infrared (NIR) light as a trigger for drug release is investigated to reduce the adverse side-effects triggered by systemic delivery of chemotherapeutic drugs. The low tissue absorbance in the NIR region, λ = 650–2500 nm, allows the irradiation to penetrate through tissues to release cisplatin from a NIR-sensitive nanocomposite of Au-Au₂S. Our laboratory has recently shown that cisplatin can be effectively released from Au-Au₂S upon NIR irradiation. Cisplatin was loaded onto Au-Au₂S through its adsorption on COOH-functionalized alkanethiols coated on Au-Au₂S. The current work focuses on the development of methods to control the release of cisplatin. Drug release is controlled by either the irradiation parameters or the type of coatings. The effect of different coatings on NIR sensitivity and drug release is investigated. Molecular layers of HS-(CH₂)n-COOH and HS-CH₂-COO-CH₂(CH₂CH₂O)xCH₂-COOH have been successfully coated onto Au-Au₂S. The effect of different surface layers on drug adsorption is being examined. In addition, a mathematical model has been developed to describe the thermal effects of different irradiation parameters on soft tissues. / Singapore-MIT Alliance (SMA)
|
202 |
Systematic Modular Approaches to Reveal DNA Damage Responses in Mammalian CellsSvensson, J. Peter January 2006 (has links)
Cancer therapy operates by inflicting damage in malignant cells. The most lethal target is the genomic DNA. As a single double strand DNA break has the potential to kill the cell, mechanisms have evolved to detect and block propagation of the damage. Genes and their products function in a highly connected network-structure with ample cross-talk between different pathways. This interplay can be studied by genome-wide experiments, such as expression profiling. The aim of this thesis is to study the cellular effects of DNA damaging agents. A theoretical framework is explored to improve understanding of expression profiling results. To analyse large datasets, computational methods were developed to model the data. Further, the response to DNA damage was investigated in different cellular systems. As late radiation toxicity is a severe limitation of radiotherapy of cancer patients, patients were enrolled in a study to search for a molecular signature to identify high-risk patients. Ex vivo irradiation of lymphocytes revealed a signature of functionally related gene sets that were capable to separate patients with regard to toxicity status. The gene set analysis was also applied to a dataset where mouse embryonic stem cells had been exposed to various doses of cisplatin. At several time-points after administration of the drug, expression profiles were determined. In addition to the expected increase of genes related to apoptosis and cell cycle progression, damaged cells also seemed to have embarked upon a p53-dependent differentiation programme. Finally, in a study of cardiac rodent cells, the genotoxic treatment with irradiation was compared to the mechanical stress induced in heart tissue. In conclusion, this thesis presents evidence for the advantage of using functionally related sets of genes in analysis and interpretation of genome-wide experiments. This strategy may improve clinical understanding of the effects of DNA damaging agents used for cancer therapeutics.
|
203 |
Manipulation of potassium ion fluxes to induce apoptosis in lung cancer cellsAndersson, Britta January 2007 (has links)
Apoptosis is a special form of cell death that if non-functional may lead to diseases such as cancer. A reduction of the intracellular potassium ion (K+) content is necessary for activating enzymes important for the execution of apoptosis. Pharmacological modulation of K+ fluxes to reduce intracellular K+ in cancer cells might therefore force the cells into apoptosis and decrease tumour cell mass. Human malignant pleural mesothelioma (MPM) is a form of cancer often caused by asbestos exposure. Although asbestos has been banned in the Western World, the incidence of MPM is expected to increase. Cisplatin is the first-line chemotherapy for MPM, but acquired resistance to the drug is a clinical problem. This thesis is mainly based on work with the human malignant pleural mesothelioma cell line (P31 wt) and a cisplatin-resistant sub-line (P31 res). The aim was to first characterize K+ fluxes in P31 wt and P31 res cells, and then manipulate them in order to reduce intracellular K+ and induce apoptosis with K+ manipulation alone or in combination with cisplatin. Characterization of K+ fluxes in P31 wt cells showed that: 1) ouabain, a digitalis-like drug, and specific blocker of the Na+, K+, ATPase pump, effectively inhibited K+ uptake, 2) bumetanide, a diuretic, and an inhibitor of the Na+, K+, 2Cl-¬-cotransporter, had a transient effect on K+ uptake, and 3) the antifungal drug amphotericin B stimulated K+ efflux. In order to determine intracellular K+ content, the potassium-binding fluorescent probe PBFI-AM was used in a 96-well plate assay. After a 3-h incubation with ouabain, with or without bumetanide, combined with amphotericin B, the intracellular K+ content was reduced in P31 wt cells but not in P31 res cells. Ouabain induced apoptosis in both P31 wt and P31 res cells. P31 res cells were sensitized to cisplatin by ouabain, since 10 mg/L cisplatin in combination with ouabain induced about the same percentage of apoptotic cells as 40 mg/L cisplatin. Apoptosis was executed via caspase-3 activation in both P31 wt and P31 res cells. Amphotericin B enhanced ouabain-induced apoptosis in P31 wt cells via caspase-9 activation, with increased caspase-3 activation and DNA fragmentation as consequences. Ouabain-induced apoptosis in P31 res cells was executed via increased expression of pro-apoptotic Bak. The combination of cisplatin with ouabain and amphotericin B was stressful to both P31 wt and P31 res cells, since SAPK/JNK a known factor in stress-induced apoptosis was activated. In conclusion, K+ flux manipulation with clinical used drugs can induce apoptosis per se and also enhance cisplatin-induced apoptosis in P31 wt and P31 res cells.
|
204 |
ASNA1 and cisplatin resistance : studies in C. elegans and in human tumor cellsHemmingsson, Oskar January 2010 (has links)
Platinum based chemotherapy is widely used to treat cancer. Cisplatin (diamminedichloroplatinum) combination treatments provide cure for metastatic testicular cancer and prolong survival for patients suffering from ovarian, head and neck, bladder and non small cell lung cancer. Tumors that initially respond to treatment may eventually acquire resistance, resulting in treatment failure. Cisplatin resistant cells are crossresistant to arsenite and antimonite and these metalloids are exported from bacteria by the ars-operon. In this thesis, we describe the human ArsA homolog, ASNA1, as a protein involved in a novel resistance mechanism to cisplatin, arsenite and antimonite. ASNA1 was downregulated by antisense and siRNA techniques in human melanoma and ovarian carcinoma cell lines. These cells displayed increased sensitivity to arsenite and the platinum based drugs cisplatin, carboplatin and oxaliplatin. In both melanoma and ovarian carcinoma, cisplatin resistant cells overexpressed ASNA1. Blockage of ASNA1 resulted in increased apoptosis and retarded growth, complicating further characterization of ASNA1 in human cell lines. ASNA1 also promotes insulin signaling and mediates membrane insertion of tail-anchored proteins. To explore different aspects of ASNA1 function with respect to cisplatin resistance, we used the model organism C. elegans. In the nematode C. elegans, asna-1 (rnai) treated larvae were hypersensitive to cisplatin, arsenite and antimonite. Adult asna-1 mutant worms were cisplatin sensitive and this hypersensitivity was seen even when apoptosis was blocked. Expression of human ASNA1 rescued the cisplatin hypersensitivity in asna-1 mutants, showing conservation of function. Transgene expression of mutated forms of asna-1 separated the cisplatin hypersensitivity phenotype from the insulin signaling phenotype of asna-1 mutants. Three ASNA-1 residues, His164, Cys285 and Cys288 were identified as essential for ASNA-1 promoted cisplatin resistance but not for insulin signaling. Finally, studies of the C. elegans germline revealed increased numbers of apoptotic cells in asna-1 mutants. In conclusion, C. elegans is a suitable model organism to identify and characterize cisplatin response mechanisms. A targeted therapy against ASNA1 could sensitize cisplatin resistant cells and improve outcome for cancer patients.
|
205 |
Screening of natural products and Alkylating agents for Antineoplastic ActivityKanyanda, Stonard Sofiel Elisa January 2007 (has links)
<p>Background and objectives: Apoptosis is a process in which a cell programmes its own death. It is a highly organized physiological mechanism in which injured or damaged cells are destroyed. Apart from physiological stimuli however, exogenous factors can induce apoptosis. Many anti-cancer drugs work by activating apoptosis in cancer cells. Natural substances have been found to have the ability to induce apoptosis in various tumour cells and these substances have been used as templates for the construction of  / novel lead compounds in anticancer treatment. On the other hand, alkylating agents such as cisplatin, cis- [PtCl2 (NH3) 2] have been widely used as antineoplastic agents for a  / wide variety of cancers including testicular, ovarian, neck and head cancers, amongst others. However, the use of cisplatin as an anticancer agent is limited due to toxicity and resistance problems. The aim of this present study was to screen the leaves of Rhus laevigata, a South African indigenous plant, for the presence of pro-apoptotic and  / anti-proliferative natural compounds and also to screen newly synthesised palladium based complexes (15 and 57) and a platinum based complex (58) for their antineoplastic  / activities tested against a panel of cell lines. Results. The results showed that crude methanol extracts from Rhus laevigata as well as the newly synthesised palladium based complexes (15 and 57) and a platinum based complex (58) induced apoptosis in the cell lines tested, as demonstrated by the externalization of phosphatidylserine, mitochondrial membrane permeabilization,caspase-3 activation, and DNA fragmentation. Caski (cervical cancer) and H157 (non small cell lung carcinoma) cell lines treated with the methanol extract from Rhus laevigata however, were more resistant to apoptosis induction. Among the metallocomplexes, complexes 15 and 57, palladium based complexes, were the most active. Conclusion: The methanol extract from the leaves of Rhus laevigata contain pro-apoptotic and antiproliferative natural compound(s), which need to be characterised and elucidated as they could provide the much-needed lead compounds in the fight against cancer. On the other hand the newly synthesized palladium complexes also need further evaluation to  / see if they can be used as anticancer agents that can overcome the problems associated with cisplatin.</p>
|
206 |
Inhibition of Cysteine Protease by Platinum (II) Diamine ComplexesRapolu, Chaitanya 01 December 2011 (has links)
Chemotherapy is the first line of treatment used in cancer. Chemotherapy drugs such as cisplatin, carboplatin and oxaliplatin are used in treatment. Cisplatin enters the cell through copper transporter CTR1 by passive diffusion and bind to DNA and proteins. Cisplatin is found to inhibit several enzymes targeting cysteine, histidine and methionine residues, which are expected to be responsible for its anticancer activity. A better understanding of how the size and shape and leaving ligands of platinum complexes affect cysteine protease, papain enzyme are studied. This could give new ways to optimize anticancer activity. The activity of papain enzyme was measured on UV-Visible spectroscopy. The inhibition profile of papain with different platinum (II) complexes, and with different combinations was studied.
|
207 |
The Reaction of a Water Soluble Platinum Compound with Methionine and DerivativesLiao, Yueh Ying 01 April 2010 (has links)
Water soluble platinum complexes are a recent area of emphasis of cisplatin chemistry. The water soluble complexes could have a reduced toxicity compared with cisplatin. Oxaliplatin, which has an oxalate leaving group, has previously been shown to have less nephro-toxicity and higher water solubility than cisplatin. [Pt(en)(oxalate)] (en = ethylenediamine) has been prepared from Pt(en)Cl2 and silver oxalate. This complex has been reacted with methionine and N-acetylmethionine at different molar ratios. At high Pt: methionine ratios, chelates with the sulfur and nitrogen atoms of the methionine are dominant; at lower Pt: methionine ratios, a bis-methionine product is formed. The en ligand is displaced by methionine but not N-acetylmethionine.
|
208 |
Uv Responsive Drug Delivery From Suprofen Incorporated LiposomesDemirbag, Birsen 01 September 2011 (has links) (PDF)
Drug delivery systems are designed to achieve low, local doses at the target site. Delivery systems can provide the drug in a continuous manner or in response to environmental stimuli such as temperature, pH or UV.
This study aimed to develop photosensitive liposomes that achieve UV-responsive release of their content. The main mechanism was to incorporate a light sensitive molecule into the liposomal bilayer then achieve destabilization of the membrane by exposure to UV. This would result in an on demand release of the bioactive content. Suprofen, a nonstereoidal anti-inflammatory drug, also a light sensitive molecule, was selected to achieve the destabilization in this study. Lipid vesicles were prepared with different ratios of phosphatidyl choline, cholesterol and Suprofen (PC:CHOL:SPF) and characterized in terms of encapsulation efficiency, release rate and responsiveness to UV. Preliminary studies were carried out with calcein (CAL), a fluorescent dye, due to the ease of detection and the in vitro studies were carried out with the cancer drug Cisplatin.
|
209 |
Genes and pathways mediating the cytotoxicity of the anticancer drug Cisplatin in Dictyostelium discoideum /Li, Guochun, January 2000 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 2000. / Typescript. Vita. Includes bibliographical references (leaves 185-226). Also available on the Internet.
|
210 |
Genes and pathways mediating the cytotoxicity of the anticancer drug Cisplatin in Dictyostelium discoideumLi, Guochun, January 2000 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 2000. / Typescript. Vita. Includes bibliographical references (leaves 185-226). Also available on the Internet.
|
Page generated in 0.0638 seconds