Spelling suggestions: "subject:"citrus -- water requirements"" "subject:"citrus -- later requirements""
1 |
Ecophysiological responses of citrus trees and sugar accumulation of fruit in response to altered plant water relationsPrinsloo, Johan Andries 03 1900 (has links)
Thesis (MSc (Horticulture))--University of Stellenbosch, 2007. / This study was undertaken to quantify some of the effects of daily fertigation on ecophysiological responses in citrus trees (Citrus spp.). Initial research was conducted to optimise and standardise the sampling procedure to quantify stem water potential (ψstem) in citrus trees. To reliably determine the plant water status of citrus trees, the following conditions are required to minimise unwanted variation in ψstem measurements. Bagging of leaves with black polyethylene envelopes covered with aluminium foil 3 to 4 hours prior to measuring ψstem allows the plant water status in those leaves to equilibrate with whole-tree plant water status, thereby providing a realistic measurement of the current water status. The use of aluminium foil to cover the bagged leaves, reduces unwanted heat stress by reflecting sunlight, and dramatically reduced variation in ψstem. The time of day at which ψstem measurements are made is important to ensure consistency in comparisons among treatments and interpretation of irrigation treatment effects. “Physiological midday” is the preferred time of day to measure ψstem, i.e. 1100 HR. Transpiring leaves with open stomata would be in sun-exposed positions on the east side of trees and should be used for making ψstem measurements. Under similar experimental conditions as those used here, only three leaves per replicate are required to detect a difference of 0.05 MPa in ψstem between treatment means. Plant water status categories were developed which may have useful practical applications, i.e. >-1.0 MPa = no water deficit; -1.0 to -1.2 MPa = low water deficit; -1.2 to -1.4 MPa = moderate water deficit; <-1.4 to -1.6 MPa = high water deficit; and <-1.6 MPa = severe water deficit.
Attempts are being made to develop systems that improve crop management and enhance citrus fruit production through efficient and timeous application of water and mineral nutrients which has led to the use of daily drip fertigation or the open hydroponics system (OHS). However, the perceived benefits are not necessarily supported by facts. Fruit size and yield are apparently enhanced, but possible negative aspects of the system have not been quantified. Fruit produced on trees grown under daily drip fertigation generally have a lower total soluble solids concentration than on trees under micro-sprinkler irrigation. This is mainly due to a dilution effect that is caused by the greater availability of water and the uptake thereof. Sugar accumulation can be optimised by controlling the amount of water that the plant receives at different developmental stages. Therefore, it is essential to quantify the ecophysiological responses and benefits of OHS/daily fertigation, as well as the effects of this technology on fruit quality. ‘Nules Clementine’ mandarin (C. reticulata Blanco) trees in two commercial orchards in Simondium, Western Cape province, South Africa, received differential irrigation treatments. The treatments were applied at the end of stage I (± mid December) of fruit development. Stem water potential, fruit size and internal fruit quality were determined. Water-deficit stress enhanced sugar accumulation of ‘Nules Clementine’ mandarin by 0.3 to 0.6 °Brix under certain conditions. These conditions require that the difference in ψstem should be of a sufficient intensity of between 0.16 and 0.3 MPa, and this difference should be maintained for a sufficient duration of between 4 and 6 weeks. Furthermore, deficit irrigation should be applied relatively early in fruit development, namely during the sugar accumulation stage which starts within 4 weeks of the end of the fruit drop period and continues until harvest.
|
2 |
A water footprint assessment of primary citrus production in the Lower Sundays River Valley Citrus Farms, Eastern Cape, South AfricaMunro, Samantha Alanna January 2015 (has links)
With the current implementation of the South African National Water Act (NWA) underway, comprehensive tools to assist in the efficient, fair and sustainable management of water resources are needed. Water footprints (WFs) are increasingly being recognised as a meaningful way to represent human appropriation of water resources and provide a framework for assessing the sustainability of water use. The study calculated blue, green and grey WFs for the lower Sundays River Valley (LSRV) citrus sector across dry, humid and long-term average climates for a number of cultivars. The sustainability of both the LSRV and the production process of citrus were examined through the adoption of a number of environmental, social and economic indicators. The study revealed that there was no water scarcity in the area because of an inter-basin transfer and that water pollution levels attributed to citrus production required a more comprehensive indicator than the grey WF. Results showed that navels, despite being the dominant cultivar, had the highest WF and the lowest water productivity and technical efficiency. It also provided lower benefits of income and employment in terms of water use in comparison to other cultivars. Conversely, cultivars such as lemons, which required a greater amount of water and fertiliser, were the most productive cultivar with the lowest blue, green and grey WF. The study demonstrated the complexity of decisions regarding water management and the need to assess accurately the environmental, social and economic implications of strategies to increase efficiency of water. The importance of incorporating local data and verifying WFs was also illustrated. The analysis highlighted that WF assessments could be useful for the South African government and agricultural sectors to assist in future water management decisions and promote increased collaboration between stakeholders. The study found that the adoption of local benchmarks could be useful in aiding the promotion of more efficient water use and could factor in sensitive economic and social attributes. WFs in conjunction with other economic and social indicators could also be used to evaluate the sustainability of current and future allocations pertaining to the implementation of the NWA. It was however noted that this requires vast amounts of accurate data.
|
Page generated in 0.0907 seconds