• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Inward-rectifier chloride currents in Reissner’s membrane epithelial cells

Kim, Kyunghee January 1900 (has links)
Master of Science / Department of Anatomy and Physiology / Daniel C. Marcus / Sensory transduction in the cochlea depends on regulated ion secretion and absorption. Results of whole-organ experiments suggested that Reissner’s membrane may play a role in the control of luminal Cl-. We tested for the presence of Cl- transport pathways in isolated mouse Reissner’s membrane using whole-cell patch clamp recordings and gene transcript analyses using RT-PCR. The current-voltage (I-V) relationship in the presence of symmetrical NMDG-Cl was strongly inward-rectifying at negative voltages, with a small outward current at positive voltages. The inward-rectifying component of the I-V curve had several properties similar to those of the ClC-2 Cl- channel. It was stimulated by extracellular acidity and inhibited by extracellular Cd2+, Zn2+, and intracellular ClC-2 antibody. Channel transcripts expressed in Reissner’s membrane include ClC-2, Slc26a7 and ClC-Ka, but not Cftr, ClC-1, ClCa1, ClCa2, ClCa3, ClCa4, Slc26a9, ClC-Kb, Best1, Best2, Best3 or the beta-subunit of ClC-K, barttin. ClC-2 is the only molecularly-identified channel present that is a strong inward rectifier. This thesis incorporates the publication by K.X. Kim and D.C. Marcus, Inward-rectifier chloride currents in Reissner’s membrane epithelial cells. Biochem. Biophys. Res. Commun. 394 (2010) 434-438, with permission of the publisher Elsevier, and is the first report of conductive Cl- transport in epithelial cells of Reissner’s membrane and is consistent with an important role in endolymph anion homeostasis.

Page generated in 0.0554 seconds