• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • Tagged with
  • 6
  • 6
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

SYNTHESIS, CHARACTERIZATION AND BLOOD COMPATIBILITY OF CONDUCTIVE CELLULOSE COMPOSITE MEMBRANES

Vartzeli, Margarita January 2010 (has links)
<p>Cladophora cellulose polypyrrole composites are recognized as potential biomaterials with future applications in hemodialysis. In this project conductive Cladophora cellulose-polypyrrole (clad-ppy) composites were prepared using two different oxidizing agents: iron (III) chloride and phosphomolybdic acid (PMo). Cyclic voltammetry, conductivity and Specific surface area measurements were done to characterize the synthesized composites. Furthermore in vitro blood compatibility studies were performed. Whole blood was incubated with clad-ppy membranes and then blood was analyzed for platelet number reduction and complement activation products (C3a and sC5b-9). Clad-ppy with Iron (III) chloride membranes were found to be superior in terms of conductivity and surface area while Clad-ppy with PMo membranes were found to provoke less blood activation. The results indicated that each oxidizing agent gave distinct properties to the composite material.</p>
2

SYNTHESIS, CHARACTERIZATION AND BLOOD COMPATIBILITY OF CONDUCTIVE CELLULOSE COMPOSITE MEMBRANES

Vartzeli, Margarita January 2010 (has links)
Cladophora cellulose polypyrrole composites are recognized as potential biomaterials with future applications in hemodialysis. In this project conductive Cladophora cellulose-polypyrrole (clad-ppy) composites were prepared using two different oxidizing agents: iron (III) chloride and phosphomolybdic acid (PMo). Cyclic voltammetry, conductivity and Specific surface area measurements were done to characterize the synthesized composites. Furthermore in vitro blood compatibility studies were performed. Whole blood was incubated with clad-ppy membranes and then blood was analyzed for platelet number reduction and complement activation products (C3a and sC5b-9). Clad-ppy with Iron (III) chloride membranes were found to be superior in terms of conductivity and surface area while Clad-ppy with PMo membranes were found to provoke less blood activation. The results indicated that each oxidizing agent gave distinct properties to the composite material.
3

Structural and Electrochemical Properties of Functionalized Nanocellulose Materials and Their Biocompatibility

Carlsson, Daniel O January 2014 (has links)
Nanocellulose has received considerable interest during the last decade because it is renewable and biodegradable, and has excellent mechanical properties, nanoscale dimensions and wide functionalization possibilities. It is considered to be a unique and versatile platform on which new functional materials can be based. This thesis focuses on nanocellulose from wood (NFC) and from Cladophora algae (CNC), functionalized with surface charges or coated with the conducting polymer polypyrrole (PPy), aiming to study the influence of synthesis processes on structural and electrochemical properties of such materials and assess their biocompatibility. The most important results of the work demonstrated that 1) CNC was oxidized to the same extent using electrochemical TEMPO-mediated oxidation as with conventional TEMPO processes, which may facilitate easier reuse of the reaction medium; 2) NFC and CNC films with or without surface charges were non-cytotoxic as assessed by indirect in vitro testing. Anionic TEMPO-CNC films promoted fibroblast adhesion and proliferation in direct in vitro cytocompatibility testing, possibly due to its aligned fibril structure; 3) Rinsing of PPy-coated nanocellulose fibrils, which after drying into free-standing porous composites are applicable for energy storage and electrochemically controlled ion extraction, significantly degraded the PPy coating, unless acidic rinsing was employed. Only minor degradation was observed during long-term ambient storage; 4) Variations in the drying method as well as type and amount of nanocellulose offered ways of tailoring the porosities of nanocellulose/PPy composites between 30% and 98%, with increments of ~10%. Supercritical CO2-drying generated composites with the largest specific surface area yet reported for nanocellulose/conducting polymer composites (246 m2/g). The electrochemical oxidation rate was found to be controlled by the composite porosity; 5) In blood compatibility assessments for potential hemodialysis applications, heparinization of CNC/PPy composites was required to obtain thrombogenic properties comparable to commercial hemodialysis membranes. The pro-inflammatory characteristics of non-heparinized and heparinized composites were, to some extent, superior to commercial membranes. The heparin coating did not affect the solute extraction capacity of the composite. The presented results are deemed to be useful for tuning the properties of systems based on the studied materials in e.g. energy storage, ion exchange and biomaterial applications.
4

Nanocellulose for Biomedical Applications : Modification, Characterisation and Biocompatibility Studies

Hua, Kai January 2015 (has links)
In the past decade there has been increasing interest in exploring the use of nanocellulose in medicine. However, the influence of the physicochemical properties of nanocellulose on the material´s biocompatibility has not been fully investigated.  In this thesis, thin films of nanocellulose from wood (NFC) and from Cladophora algae (CC) were modified by the addition of charged groups on their surfaces and the influence of these modifications on the material´s physicochemical properties and on cell responses in vitro was studied. The results indicate that the introduction of charged groups on the surface of NFC and CC results in films with decreased surface area, smaller average pore size and a more compact structure compared with the films of unmodified nanocelluloses. Furthermore, the fibres in the carboxyl-modified CC films were uniquely aggregated and aligned, a state which tended to become more prevalent with increased surface-group density. The biocompatibility studies showed that NFC films containing hydroxypropyltrime-thylammonium (HPTMA) groups presented a more cytocompatible surface than unmodified NFC and carboxymethylated NFC regarding human dermal fibroblasts. Carboxymethyl groups resulted in NFC films that promoted inflammation, while HPTMA groups had a passivating effect in terms of inflammatory response.  On the other hand, both modified CC films behaved as inert materials in terms of the inflammatory response of monocytes/macrophages and, under pro-inflammatory stimuli, they suppressed secretion of the pro-inflammatory cytokine TNF-α, with the effects of the carboxylated CC film more pronounced than those of the HPTMA CC material.  Carboxyl CC films showed good cytocompatibility with fibroblasts and osteoblastic cells. However, it was necessary to reach a threshold value in carboxyl-group density to obtain CC films with cytocompatibility comparable to that of commercial tissue culture material.  The studies presented here highlight the ability of the nanocellulose films to modulate cell behaviour and provide a foundation for the design of nanocellulose-based materials that trigger specific cell responses. The bioactivity of nanocellulose may be optimized by careful tuning of the surface properties. The outcomes of this thesis are foreseen to contribute to our fundamental understanding of the biointerface phenomena between cells and nanocellulose as well as to enable engineering of bioinert, bioactive, and bioadaptive materials.
5

Development of Cellulose-Based, Nanostructured, Conductive Paper for Biomolecular Extraction and Energy Storage Applications

Razaq, Aamir January 2011 (has links)
Conductive paper materials consisting of conductive polymers and cellulose are promising for high-tech applications (energy storage and biosciences) due to outstanding aspects of environmental friendliness, mechanical flexibility, electrical conductivity and efficient electroactive behavior. Recently, a conductive composite paper material was developed by covering the individual nanofibers of cellulose from the green algae Cladophora with a polypyrrole (PPy) layer. The PPy-Cladophora cellulose composite paper is featured with high surface area (80 m2 g-1), electronic conductivity (~2 S cm-1), thin conductive layer (~50 nm) and easily up-scalable manufacturing process. This doctoral thesis reports the development of the PPy-Cladophora composite as an electrode material in electrochemically controlled solid phase ion-exchange of biomolecules and all-polymer based energy storage devices. First, electrochemical ion-exchange properties of the PPy-Cladophora cellulose composite were investigated in electrolytes containing three different types of anions, and it was found that smaller anions (nitrate and chloride) are more readily extracted by the composite than lager anions (p-toluene sulfonate). The influence of differently sized oxidants used during polymerization on the anion extraction capacity of the composite was also studied. The composites synthesized with two different oxidizing agents, i.e. iron (III) chloride and phosphomolybdic acid (PMo), were investigated for their ability to extract anions of different sizes. It was established that the number of absorbed ions was larger for the iron (III) chloride-synthesized sample than for the PMo-synthesized sample for all four electrolytes studied. Further, PPy-Cladophora cellulose composites have shown remarkable electrochemically controlled ion extraction capacities when investigated as a solid phase extraction material for batch-wise extraction and release of DNA oligomers. In addition, composite paper was also investigated as an electrode material in the symmetric non-metal based energy storage devices. The salt and paper based energy storage devices exhibited charge capacities (38−50 mAh g−1) with reasonable cycling stability, thereby opening new possibilities for the production of environmentally friendly, cost efficient, up-scalable and lightweight energy storage systems. Finally, micron-sized chopped carbon fibers (CCFs) were incorporated as additives to improve the charge-discharge rates of paper-based energy storage devices and to enhance the DNA release efficiency. The results showed the independent cell capacitances of ~60-70 F g-1 (upto current densities of 99 mA cm2) and also improved the efficiency of DNA release from 25 to 45%.
6

Virus retentive filter paper for processing of plasma-derived proteins

Wu, Lulu January 2020 (has links)
The studies in the present thesis explored the feasibility of using nanocellulose-based filters in virus removal filtration of plasma-derived proteins.   In Paper I, two-step nanofiltration of commercially available human serum albumin (HSA) product, which was diluted to 10 g L-1 by phosphate buffer saline (PBS) and adjusted pH to 7.4, was performed to remove soluble protein aggregates and reduce filter fouling. The two-step filtration of HSA employed nanocellulose-based filters of varying thickness, i.e. 11 μm and 22 μm filters.  The removal of HSA aggregates during filtration through 11 μm pre-filters dramatically improves the flow properties of the 22 μm filter, enabling high protein throughput and high virus clearance. A distribution of pore sizes between 50 nm and 80 nm, which is present in the 11 μm filter and is absent in the 22 μm filter, plays a crucial part in removing the HSA aggregates. With respect to virus filtration, 1 bar constant trans-membrane pressure filtration shows poor removal ability of ΦX174 bacteriophage (28 nm), i.e., log10 reduction value (LRV) ≤ 3.75, while that at 3 bar and 5 bar achieves LRV[MOU1] [LW2]  &gt; 5 model virus clearance and overall rapid filtration. Removal of protein aggregates during bioprocessing of HSA products is key to improving the filtration flux, which makes it possible to apply virus removal filtration for HSA to ensure its virus safety.   In Paper II, nanofiltration of human plasma-derived intravenous immuno-globulin (IVIG) intermediate (11.26 g L-1, pH 4.9) was carried out to demonstrate high product recovery and high model virus clearance. Virus removal filtration of industrial-grade human IVIG was achieved using 33μm filters at both low (60 Lm-2) and high (288 Lm-2) volumetric load. No changes in IVIG structure were detected and high product recovery was recorded. High virus clearance (LRV ≥ 5-6) was achieved for the small-size model viruses (ΦX174 and MS2 bacteriophages) during the load volume of 60 Lm-2. Side-by-side comparisons with commercial virus removal filters suggest that the nanocellulose-based filter paper presents great potential for industrial bioprocessing of plasma-derived IVIG.   In Paper III, process analytical technology (PAT) approach was employed to identify the critical filter parameters, e.g. thickness, basis weight, pore size, and flux, affecting model virus removal efficiency using filters produced by different hot presses.  The quality parameters were analyzed with ANOVA and Shewhart charts. Compared with other studied parameters, the hydraulic flux appears as the most relevant final product quality attribute of the nanocellulose-based filter paper to reflect the virus removal efficiency. In particular, a 15% higher flux may be associated with a 0.5-1.0 log10 reduced virus clearance (p=0.007). The results are highlight the importance of continued systematic studies in quality assurance using statistical process control tools  [MOU1]Define LRV  [LW2]Defined in the line above

Page generated in 0.0864 seconds