• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Theoretical studies of the dynamics and spectroscopy of weakly bound systems

López, José G. 10 October 2005 (has links)
No description available.
2

Theoretical and experimental studies of energy transfer dynamics in collisions of atomic and molecular species with model organic surfaces

Alexander, William Andrew 06 May 2009 (has links)
A full understanding of chemical reaction dynamics at the gas/organic-surface interface requires knowledge of energy-transfer processes that happen during the initial gas/surface collision. We have examined the influence of mass and rovibrational motion on the energy-transfer dynamics of gas-phase species scattering from model organic surfaces using theory and experiment. Molecular-beam scattering techniques were used to investigate the rare gases, Ne, Ar, Kr, and Xe, and the diatomics, N<sub>2</sub> and CO, in collisions with CH<sub>3</sub>- and CF<sub>3</sub>-terminated self-assembled monolayer (SAM) surfaces. Complementary molecular-dynamics simulations were employed to gain an atomistic view of the collisions and elucidate mechanistic details not observable with our current experimental apparatus. We developed a systematic approach for obtaining highly accurate analytic intermolecular potential-energy surfaces, derived from high-quality ab initio data, for use in our classical-trajectory simulations. Results of rare gas scattering experiments and simulations indicate mass to be the determining factor in the energy-transfer dynamics, while other aspects of the potential-energy surface play only a minor role. Additionally, electronic-structure calculations were used to correlate features of the potential-energy surface with the energy-transfer behavior of atoms and small molecules scattering from polar and non-polar SAM surfaces. Collisions of diatomic molecules with SAMs are seen to be vibrationally adiabatic, however translational energy transfer to and from rotational modes of the gas species, while relatively weak, is readily apparent. Examination of the alignment and orientation of the final rotational angular momentum of the gas species reveals that the collisions induce a stereodynamic preference for the expected &quot;cartwheel&quot; motion, as well as a surprising propensity for &quot;corkscrew&quot; or &quot;propeller&quot; motion. The calculated stereodynamic trends suggest that the CH<sub>3</sub>-SAM is effectively more corrugated than the CF<sub>3</sub>-SAM. Finally, the feasibility for collisional-energy promoted, direct gas/organic-surface reactions was interrogated using the 1,3-dipolar azide-alkyne cycloaddition reaction. We found that geometrical constraints prevented the reaction from proceeding at the probed conditions. / Ph. D.
3

Theoretical studies of the dynamics of gas-phase and gas/surface atom+alkane reactions and of the structure and dynamics of water confined between hydrophobic surfaces

Layfield, Joshua Parker 10 March 2011 (has links)
Comprehension of reactive chemical dynamics in the gas phase and at the gas/organic-surface interface and non-reactive dynamics at the interface between hydrophobic surfaces and water requires an understanding of the fundamental atomic and molecular interactions that undergird these important phenomena. In an effort to study these regimes of chemical interaction, we have performed computational simulations that probe the dynamics of chemical systems that exemplify each of these domains. To study gas-phase chemical dynamics, we reparametrized semiempirical Hamiltonians so that they can accurately describe the potential energy surfaces for two distinct atom+alkane reactions. In addition to their demonstrated accuracy, these methods possess the attractive quality of being computationally inexpensive enough to afford extensive direct-dynamics trajectory studies. Our results on the dynamics of atom+alkane hydrogen-abstraction reactions have shown good agreement with experimental metrics that are as diverse as product velocity distributions, excitation functions, angular distributions and rovibrational state distributions for diatomic products of the abstraction. We have demonstrated that our reparametrized Hamiltonians are suitable for investigating gas-phase reactions with up to 15 (5 heavy) atoms and that they are appropriate for studying reactions beyond the gas phase, especially gas/surface reactions. By employing our semiempirical methods within a quantum-mechanics/molecular-mechanics hybrid scheme we are able to examine hydrogen-abstraction reactions of fluorine atoms with alkanethiolate self-assembled monolayers. Our simulations reproduce the general trends of experimental results for the cousin F+squalane reaction. Our simulations also probe the role that secondary collisions play in determining the final internal and translational energy of the product HF molecules. For instance, we determined that very few interactions with the SAM surface were required to cool rotational and translational modes of the HF product, while its vibrational energy remains unchanged on the time scale that HF molecules trap on the SAM surface. Moving beyond the gas/organic surface interface, we have also performed molecular-dynamics simulations of thin water films confined between hydrophobic SAM surfaces. These simulations illuminated the structural and dynamics behavior induced in the water films by confinement in hydrophobic environments. While most effects of the surface do not penetrate deep into the water layers we have noted that enhanced lateral diffusion of water molecules can persist in these films with > 1 nm length scales. We have elucidated a possible mechanistic precursor for the attractive forces seen in experimental measurement of the hydrophobic effect. / Ph. D.

Page generated in 0.1044 seconds