Spelling suggestions: "subject:"classificação binária"" "subject:"lassificação binária""
1 |
Máquina de aprendizagem mínima com opção de rejeição / Minimal learning machine with rejection optionOliveira, Adonias Caetano de January 2016 (has links)
OLIVEIRA, Adonias Caetano de. Máquina de aprendizagem mínima com opção de rejeição. 2016. 64 f. Dissertação (Mestrado em Ciência da Computação)-Universidade Federal do Ceará, Fortaleza, 2016. / Submitted by Anderson Silva Pereira (anderson.pereiraaa@gmail.com) on 2017-01-10T22:32:38Z
No. of bitstreams: 1
2016_dis_acoliveira.pdf: 1484049 bytes, checksum: 69ee53b0239792605dd28e1cc3c298cc (MD5) / Approved for entry into archive by Rocilda Sales (rocilda@ufc.br) on 2017-01-11T15:47:12Z (GMT) No. of bitstreams: 1
2016_dis_acoliveira.pdf: 1484049 bytes, checksum: 69ee53b0239792605dd28e1cc3c298cc (MD5) / Made available in DSpace on 2017-01-11T15:47:12Z (GMT). No. of bitstreams: 1
2016_dis_acoliveira.pdf: 1484049 bytes, checksum: 69ee53b0239792605dd28e1cc3c298cc (MD5)
Previous issue date: 2016 / The Minimal Learning Machine (MLM) is an inductive learning method applied to supervised classification and regression problems. It is basically a mapping between points in the geometric configurations of the input and output space. With the known configuration to an entry point in the input space corresponding to the output configuration space after obtaining a simple linear model learning distance between arrays of input and output can be estimated. The estimated result is then passed to locate the exit point and thus provide an estimate for response or indication of the class. The MLM has reached a promising performance in various classification and regression problems compared with other classical methods of learning. However, it has not yet been analyzed performance using classification strategy of rejection option. This technique protects the system for decision support in many human activities, especially in the field of medicine, against excessive errors like making difficult decision consequences. In this way, potential errors are converted into rejection, avoiding further confusion and delegating them well for the evaluation of an expert, or even, for more specialized classifiers. Therefore, the purpose of this dissertation is the development of the Minimum Learning Machine (MLM) and its variants with Rejection option in binary classification problems, more specifically, in the classification of diseases Spinal (PVC-2C), Diabetes (Pima Indians diabetes), survival of breast cancer (Haberman) and prediction software defects (KC2). The evaluation of the performance of these techniques is, in general, the analysis of the accuracy-rejection curve compared to more traditional methods of classification with rejection option that are based in methods Perceptron Multilayer (MLP), K-Neighbors More Next (K -NN) and K-Means. / A Máquina de Aprendizagem Mínima (MLM) é um método de aprendizagem indutivo supervisionado aplicado em problemas de classificação e regressão. Basicamente é um mapeamento entre configurações geométricas dos pontos no espaço de entrada e saída. Com a configuração conhecida para um ponto de entrada no espaço de entrada poderá ser estimada a configuração correspondente no espaço de saída após a obtenção de um modelo de aprendizagem linear simples entre matrizes de distância da entrada e saída. O resultado estimado é então aproveitado para localizar o ponto de saída e, assim, prover uma estimativa para resposta ou indicação da classe. A MLM tem alcançado um desempenho promissor em vários problemas de classificação e regressão em comparação com outros métodos clássicos de aprendizagem. Entretanto, ainda não foi analisado seu desempenho utilizando estratégia de classificação com opção de rejeição. Essa técnica protege o sistema de apoio à decisão em muitas atividades humanas, sobretudo no domínio da medicina, contra erros excessivos como consequências de tomadas de decisão difíceis. Dessa maneira, potenciais erros são convertidos em rejeição, evitando maior confusão e delegando-os assim para a avaliação de um especialista, ou mesmo, por classificadores mais especializados. Portanto, a proposta desta dissertação é o desenvolvimento da Máquina de Aprendizagem Mínima (MLM) e suas variantes com opção de Rejeição em problemas de classificação binária, mais especificamente, na classificação de patologias da Coluna Vertebral (PVC-2C), Diabetes (Pima Indians diabetes), sobrevivência do Câncer de Mama (Haberman) e predição de defeitos de software (KC2). A avaliação do desempenho dessas técnicas consiste, em geral, na análise da curva de acurácia-rejeição comparativamente com métodos mais tradicionais de classificação com opção de rejeição que se baseiam os métodos Perceptron Multicamadas (MLP), K-Vizinhos mais Próximos (K-NN) e K-Médias.
|
2 |
Uma abordagem baseada em Perceptrons balanceados para geração de ensembles e redução do espaço de versõesEnes, Karen Braga 08 January 2016 (has links)
Submitted by Renata Lopes (renatasil82@gmail.com) on 2017-06-07T17:28:53Z
No. of bitstreams: 1
karenbragaenes.pdf: 607859 bytes, checksum: f7907cc35c012dd829a223c7d46a7e6b (MD5) / Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2017-06-24T13:13:01Z (GMT) No. of bitstreams: 1
karenbragaenes.pdf: 607859 bytes, checksum: f7907cc35c012dd829a223c7d46a7e6b (MD5) / Made available in DSpace on 2017-06-24T13:13:01Z (GMT). No. of bitstreams: 1
karenbragaenes.pdf: 607859 bytes, checksum: f7907cc35c012dd829a223c7d46a7e6b (MD5)
Previous issue date: 2016-01-08 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Recentemente, abordagens baseadas em ensemble de classificadores têm sido bastante exploradas por serem uma alternativa eficaz para a construção de classificadores mais acurados. A melhoria da capacidade de generalização de um ensemble está diretamente relacionada à acurácia individual e à diversidade de seus componentes. Este trabalho apresenta duas contribuições principais: um método ensemble gerado pela combinação de Perceptrons balanceados e um método para geração de uma hipótese equivalente ao voto majoritário de um ensemble. Para o método ensemble, os componentes são selecionados por medidas de diversidade, que inclui a introdução de uma medida de dissimilaridade, e avaliados segundo a média e o voto majoritário das soluções. No caso de voto majoritário, o teste de novas amostras deve ser realizado perante todas as hipóteses geradas. O método para geração da hipótese equivalente é utilizado para reduzir o custo desse teste. Essa hipótese é obtida a partir de uma estratégia iterativa de redução do espaço de versões. Um estudo experimental foi conduzido para avaliação dos métodos propostos. Os resultados mostram que os métodos propostos são capazes de superar, na maior parte dos casos, outros algoritmos testados como o SVM e o AdaBoost. Ao avaliar o método de redução do espaço de versões, os resultados obtidos mostram a equivalência da hipótese gerada com a votação de um ensemble de Perceptrons balanceados. / Recently, ensemble learning theory has received much attention in the machine learning community, since it has been demonstrated as a great alternative to generate more accurate predictors with higher generalization abilities. The improvement of generalization performance of an ensemble is directly related to the diversity and accuracy of the individual classifiers. In this work, we present two main contribuitions: we propose an ensemble method by combining Balanced Perceptrons and we also propose a method for generating a hypothesis equivalent to the majority voting of an ensemble. Considering the ensemble method, we select the components by using some diversity strategies, which include a dissimilarity measure. We also apply two strategies in view of combining the individual classifiers decisions: majority unweighted vote and the average of all components. Considering the majority vote strategy, the set of unseen samples must be evaluate towards the generated hypotheses. The method for generating a hypothesis equivalent to the majority voting of an ensemble is applied in order to reduce the costs of the test phase. The hypothesis is obtained by successive reductions of the version space. We conduct a experimental study to evaluate the proposed methods. Reported results show that our methods outperforms, on most cases, other classifiers such as SVM and AdaBoost. From the results of the reduction of the version space, we observe that the genareted hypothesis is, in fact, equivalent to the majority voting of an ensemble.
|
Page generated in 0.0726 seconds