• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Detecção de elementos antrópicos em imagens aéreas da floresta amazônica

Cavalcanti, Luiz Carlos Amaral Mendonça 01 July 2016 (has links)
Submitted by Divisão de Documentação/BC Biblioteca Central (ddbc@ufam.edu.br) on 2016-12-01T13:30:13Z No. of bitstreams: 1 Dissertação - Luiz C. A. M. Cavalcanti.pdf: 12456865 bytes, checksum: 8cefb0785da034136e29212e34ef9290 (MD5) / Approved for entry into archive by Divisão de Documentação/BC Biblioteca Central (ddbc@ufam.edu.br) on 2016-12-01T13:30:28Z (GMT) No. of bitstreams: 1 Dissertação - Luiz C. A. M. Cavalcanti.pdf: 12456865 bytes, checksum: 8cefb0785da034136e29212e34ef9290 (MD5) / Approved for entry into archive by Divisão de Documentação/BC Biblioteca Central (ddbc@ufam.edu.br) on 2016-12-01T13:30:49Z (GMT) No. of bitstreams: 1 Dissertação - Luiz C. A. M. Cavalcanti.pdf: 12456865 bytes, checksum: 8cefb0785da034136e29212e34ef9290 (MD5) / Made available in DSpace on 2016-12-01T13:30:50Z (GMT). No. of bitstreams: 1 Dissertação - Luiz C. A. M. Cavalcanti.pdf: 12456865 bytes, checksum: 8cefb0785da034136e29212e34ef9290 (MD5) Previous issue date: 2016-07-01 / Agência de Fomento não informada / During environmental crimes patrolling, the response time is a very important component for the success of the missions. Generally, infractions occur in remote and hard-access places, characteristics that hinder both the patrolling as well the action of environmental protection agents. To increase the approaches’ success rate and reduce the risk of human lives, unmanned aerial vehicles (UAVs) can be used to cover large areas of forest in a short time without being perceived by offenders, allowing the patrolling organs responsible for these areas to plan and act more efficiently in the repression of such crimes. The new problem generated by this approach is the huge amount of data generated during these missions, which often includes hours of video. The manual inspection of all this material in searching for anthropic elements is very tiring and error-prone. This work presents a evaluation of image segmentation techniques, inspections of features to be extracted, followed by a supervised classification of those segments for anthropic element detection in amazon’s rain forest aerial images. Besides making publicly available a dataset with more than 3,000 images and 10,000 segments labeled accordingly, this work investigates different strategies for anthropic elements classification. The experiments obtained a consistency error rate inferior to 8% in image segmentation and a precision above 94% on target objects classification through one-class classifiers ensemble, using One-class SVM and REPTree algorithms. / Durante o patrulhamento de crimes ambientais, o tempo de resposta é um componente muito importante no sucesso das missões. Geralmente as infrações ocorrem em lugares ermos e de difícil acesso, características que dificultam tanto o patrulhamento quanto a ação de agentes de preservação ambiental. Para aumentar a taxa de sucesso das abordagens e reduzir o risco de vidas humanas, veículos aéreos não-tripulados (VANTs) podem ser usados para cobrir grandes áreas de floresta em pouco tempo, sem que sejam percebidos por infratores, permitindo que os órgãos de patrulhamento dessas áreas possam planejar e agir com mais eficiência na repressão a esses crimes. O novo problema gerado por essa abordagem é a enorme quantidade de dados gerada durante essas missões, que muitas vezes compreendem horas de vídeo. A inspeção manual de todo esse material em busca de elementos antrópicos é muito cansativa e propensa a erros. Este trabalho apresenta uma avaliação de técnicas de segmentação de imagens, inspeção de características a serem extraídas, seguido da classificação supervisionada destes segmentos para detecção de elementos antrópicos em imagens aéreas da floresta amazônica. Além da publicação de uma base de dados com cerca de 3.000 imagens e 10.000 segmentos devidamente rotulados e investiga diferentes estratégias para classificação de elementos antrópicos. Os experimentos realizados obtiveram taxas de erro de consistência inferiores a 8% na segmentação das imagens utilizando o algoritmo SRM e precisão acima de 94% na classificação dos objetos de interesse através de conjuntos de classificadores unários, utilizando os algoritmos One-Class SVM e REPTree.
2

Detecção de patologias em plantações de eucaliptos com aprendizado de máquina / Detection of diseases in eucalyptus plantations with machine learning

Oliveira, Matheus Della Croce 27 June 2016 (has links)
As plantações de eucaliptos representam grande potencial econômico para a indústria de papel, celulose, entre outras, além de apresentar uma série de características positivas como alta produtividade, grande potencial de adaptação e ampla diversidade de espécies. Em consequência a tais vantagens, há décadas diversas pesquisas vem sendo realizadas com o intuito de monitorar e detectar diversas doenças que aferem este tipo de cultura. O monitoramento rápido das doenças em eucaliptos torna-se um requisito para evitar grandes perdas econômicas. Neste projeto de pesquisa utilizou-se imagens aéreas obtidas por VANTs (Veículos Aéreos Não-Tripulados) para detectar um tipo específico de estresse que afeta as plantações de eucaliptos: a Murcha de Ceratocyst is. Após rotular eucaliptos doentes e saudáveis e outras estruturas em imagens aéreas, técnicas de Aprendizado de Máquina Supervisionado foram desenvolvidas para generalizar o conhecimento e possibilitar uma rápida detecção através das imagens RGB e multiespectrais. Dentre as técnicas utilizadas, destacou-se a arquitetura de Redes Neurais Convolucional chamada de Custom- CNN, inspirada no modelo da tradicional arquitetura Lenet -5 agregando-se melhorias do estado-da-arte, como a camada convolucional 1x1. Na classificação do conjunto RGB, a Custom-CNN obteve o maior F-score, de 0,81, sendo que a técnica SVM-rbf obteve 0,67. No conjunto de dados com imagens multiespectrais, a Lenet -5 e a Custom-CNN at ingiram, respectivamente, 0,63 e 0,66 de F-score, enquanto o SVM-rbf obteve 0,46. Esta dissertação apresenta a metodologia utilizada para a classificação, elencando as principais características dos algoritmos utilizados, bem como os resultados experimentais obtidos. Há ainda uma aplicação do classificador Regressão Logística para o planejamento de trajetória com VANTs. / Eucalypt us plantations represent great economic potential for t he paper, pulp, among others, in addition to presenting a number of positive characteristics such as high productivity, great potential for adaptaion and wide diversity of species. In consequence of t hese advantages, there are several decades research has been conducted in order to monitor and detect various diseases that affect s this type of culture. The rapid monitoring of diseases in eucalyptus becomes a requirement to avoid major economic losses. In t his research project we used aerial images obtained by UAVs (Unmanned Aerial Vehicles) to detect an specific type of stress t hat a effect s eucalyptus plantations: the Ceratocyst is wilt . After labeling diseased eucalyptus, healthy eucalyptus and other structures in aerial images, Supervised Machine Learning techniques were developed to generalize knowledge and enable rapid detection through RGB and multispectral images. Among the techniques used, stood out t he Convolutional Neural Network architecture called Custom-CNN, that was inspired by the model of t raditional Lenet -5 architecture and with state-of-the-art improvements, such as t he 1x1 convolution layer. In t he classification of RGB dataset , the Custom-CNN obtained the highest F-score of 0.81, and SVM-RBF technique obtained 0.67. In t he dataset with multispectral images, Lenet -5 and Custom-CNN obtained, respectively, 0.63 and 0.66 of F-score, while SVM-rbf obtained 0.46. This paper presents the methodology used for classification, listing the main features of the algorithms and the experimental results. There is also an application of Logistic Regression classifier for path planning with UAVs.
3

Detecção de patologias em plantações de eucaliptos com aprendizado de máquina / Detection of diseases in eucalyptus plantations with machine learning

Matheus Della Croce Oliveira 27 June 2016 (has links)
As plantações de eucaliptos representam grande potencial econômico para a indústria de papel, celulose, entre outras, além de apresentar uma série de características positivas como alta produtividade, grande potencial de adaptação e ampla diversidade de espécies. Em consequência a tais vantagens, há décadas diversas pesquisas vem sendo realizadas com o intuito de monitorar e detectar diversas doenças que aferem este tipo de cultura. O monitoramento rápido das doenças em eucaliptos torna-se um requisito para evitar grandes perdas econômicas. Neste projeto de pesquisa utilizou-se imagens aéreas obtidas por VANTs (Veículos Aéreos Não-Tripulados) para detectar um tipo específico de estresse que afeta as plantações de eucaliptos: a Murcha de Ceratocyst is. Após rotular eucaliptos doentes e saudáveis e outras estruturas em imagens aéreas, técnicas de Aprendizado de Máquina Supervisionado foram desenvolvidas para generalizar o conhecimento e possibilitar uma rápida detecção através das imagens RGB e multiespectrais. Dentre as técnicas utilizadas, destacou-se a arquitetura de Redes Neurais Convolucional chamada de Custom- CNN, inspirada no modelo da tradicional arquitetura Lenet -5 agregando-se melhorias do estado-da-arte, como a camada convolucional 1x1. Na classificação do conjunto RGB, a Custom-CNN obteve o maior F-score, de 0,81, sendo que a técnica SVM-rbf obteve 0,67. No conjunto de dados com imagens multiespectrais, a Lenet -5 e a Custom-CNN at ingiram, respectivamente, 0,63 e 0,66 de F-score, enquanto o SVM-rbf obteve 0,46. Esta dissertação apresenta a metodologia utilizada para a classificação, elencando as principais características dos algoritmos utilizados, bem como os resultados experimentais obtidos. Há ainda uma aplicação do classificador Regressão Logística para o planejamento de trajetória com VANTs. / Eucalypt us plantations represent great economic potential for t he paper, pulp, among others, in addition to presenting a number of positive characteristics such as high productivity, great potential for adaptaion and wide diversity of species. In consequence of t hese advantages, there are several decades research has been conducted in order to monitor and detect various diseases that affect s this type of culture. The rapid monitoring of diseases in eucalyptus becomes a requirement to avoid major economic losses. In t his research project we used aerial images obtained by UAVs (Unmanned Aerial Vehicles) to detect an specific type of stress t hat a effect s eucalyptus plantations: the Ceratocyst is wilt . After labeling diseased eucalyptus, healthy eucalyptus and other structures in aerial images, Supervised Machine Learning techniques were developed to generalize knowledge and enable rapid detection through RGB and multispectral images. Among the techniques used, stood out t he Convolutional Neural Network architecture called Custom-CNN, that was inspired by the model of t raditional Lenet -5 architecture and with state-of-the-art improvements, such as t he 1x1 convolution layer. In t he classification of RGB dataset , the Custom-CNN obtained the highest F-score of 0.81, and SVM-RBF technique obtained 0.67. In t he dataset with multispectral images, Lenet -5 and Custom-CNN obtained, respectively, 0.63 and 0.66 of F-score, while SVM-rbf obtained 0.46. This paper presents the methodology used for classification, listing the main features of the algorithms and the experimental results. There is also an application of Logistic Regression classifier for path planning with UAVs.

Page generated in 0.5319 seconds