• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Amostragem e medidas de qualidade de shapelets / Shapelets sampling and quality measurements

Cavalcante, Lucas Schmidt 02 May 2016 (has links)
Uma série temporal é uma sequência ordenada pelo tempo de valores reais. Dado que inúmeros fenômenos do dia-a-dia podem ser representados por séries temporais, há grande interesse na mineração de dados temporais, em especial na tarefa de classificação. Recentemente foi introduzida uma nova primitiva de séries temporais chamada shapelet, que é uma subsequência que permite a classificação de séries temporais de acordo com padrões locais. Na transformada shapelet estas subsequências se tornam atributos em uma matriz de distância que mede a dissimilaridade entre os atributos e as séries temporais. Para obter a transformada é preciso escolher alguns shapelets dos inúmeros possíveis, seja pelo efeito de evitar overfitting ou pelo fato de que é computacionalmente caro obter todos. Sendo assim, foram elaboradas medidas de qualidade para os shapelets. Tradicionalmente tem se utilizado a medida de ganho de informação, porém recentemente foi proposto o uso da f-statistic, e nós propomos neste trabalho uma nova denominada in-class transitions. Em nossos experimentos demonstramos que a inclass transitions costuma obter a melhor acurácia, especialmente quando poucos atributos são utilizados. Além disso, propomos o uso de amostragem aleatória nos shapelets para reduzir o espaço de busca e acelerar o processo de obtenção da transformada. Contrastamos a abordagem de amostragem aleatória contra uma em que só são exploradas shapelets de determinados tamanhos. Nossos experimentos mostraram que a amostragem aleatória é mais rápida e requer a computação de um menor número de shapelets. De fato, obtemos os melhores resultados ao amostrarmos 5% dos shapelets, mas mesmo a uma amostragem de 0,05% não foi possível notar uma degradação significante da acurácia. / A time series is a time ordered sequence of real values. Given that numerous daily phenomena that can be described by time series, there is a great interest on its data mining, specially on the task of classification. Recently it was introduced a new time series primitive called shapelets, that is a subsequence that allows the classification of time series by local patterns. On the shapelet transformation these subsequences turn into attributes in a distance matrix that measures the dissimilarity between these attributes and the time series. To obtain the shapelet transformation it is required to choose some shapelets among all of the possible ones, be it to avoid overfitting or because it is too computationally expensive to obtain everyone. Thus, some shapelet quality measurements were created. Traditionally the information gain has been used as the default measurement, however, recently it was proposed to use the f-statistic instead, and in this work we propose a new one called in-class transitions. On our experiments it is shown that usually the in-class transitions achieves the best accuracy, specially when few attributes are used. Moreover, we propose the use of random sampling of shapelets as a way to reduce the search space and to speed up the process of obtaining the shapelet transformation. We contrast this approach with one that explores only shapelets that have a specific length. Our experiments show that random sampling is faster and requires fewer shapelets to be computed. In fact, we got the best results when we sampled 5% of the shapelets, but even at a rate of 0.05% it was not possible to detect a significant degradation of the accuracy.
2

Amostragem e medidas de qualidade de shapelets / Shapelets sampling and quality measurements

Lucas Schmidt Cavalcante 02 May 2016 (has links)
Uma série temporal é uma sequência ordenada pelo tempo de valores reais. Dado que inúmeros fenômenos do dia-a-dia podem ser representados por séries temporais, há grande interesse na mineração de dados temporais, em especial na tarefa de classificação. Recentemente foi introduzida uma nova primitiva de séries temporais chamada shapelet, que é uma subsequência que permite a classificação de séries temporais de acordo com padrões locais. Na transformada shapelet estas subsequências se tornam atributos em uma matriz de distância que mede a dissimilaridade entre os atributos e as séries temporais. Para obter a transformada é preciso escolher alguns shapelets dos inúmeros possíveis, seja pelo efeito de evitar overfitting ou pelo fato de que é computacionalmente caro obter todos. Sendo assim, foram elaboradas medidas de qualidade para os shapelets. Tradicionalmente tem se utilizado a medida de ganho de informação, porém recentemente foi proposto o uso da f-statistic, e nós propomos neste trabalho uma nova denominada in-class transitions. Em nossos experimentos demonstramos que a inclass transitions costuma obter a melhor acurácia, especialmente quando poucos atributos são utilizados. Além disso, propomos o uso de amostragem aleatória nos shapelets para reduzir o espaço de busca e acelerar o processo de obtenção da transformada. Contrastamos a abordagem de amostragem aleatória contra uma em que só são exploradas shapelets de determinados tamanhos. Nossos experimentos mostraram que a amostragem aleatória é mais rápida e requer a computação de um menor número de shapelets. De fato, obtemos os melhores resultados ao amostrarmos 5% dos shapelets, mas mesmo a uma amostragem de 0,05% não foi possível notar uma degradação significante da acurácia. / A time series is a time ordered sequence of real values. Given that numerous daily phenomena that can be described by time series, there is a great interest on its data mining, specially on the task of classification. Recently it was introduced a new time series primitive called shapelets, that is a subsequence that allows the classification of time series by local patterns. On the shapelet transformation these subsequences turn into attributes in a distance matrix that measures the dissimilarity between these attributes and the time series. To obtain the shapelet transformation it is required to choose some shapelets among all of the possible ones, be it to avoid overfitting or because it is too computationally expensive to obtain everyone. Thus, some shapelet quality measurements were created. Traditionally the information gain has been used as the default measurement, however, recently it was proposed to use the f-statistic instead, and in this work we propose a new one called in-class transitions. On our experiments it is shown that usually the in-class transitions achieves the best accuracy, specially when few attributes are used. Moreover, we propose the use of random sampling of shapelets as a way to reduce the search space and to speed up the process of obtaining the shapelet transformation. We contrast this approach with one that explores only shapelets that have a specific length. Our experiments show that random sampling is faster and requires fewer shapelets to be computed. In fact, we got the best results when we sampled 5% of the shapelets, but even at a rate of 0.05% it was not possible to detect a significant degradation of the accuracy.
3

Classicação de séries temporais utilizando diferentes representações de dados e ensembles / Time series classification using multiple representations and ensembles

Giusti, Rafael 23 August 2017 (has links)
Dados temporais são ubíquos em quase todas as áreas do conhecimento humano. A área de aprendizado de máquina tem contribuído para a mineração desse tipo de dados com algoritmos para classificação, agrupamento, detecção de anomalias ou exceções e detecção de padrões recorrentes, dentre outros. Tais algoritmos dependem, muitas vezes, de uma função capaz de expressar um conceito de similaridade entre os dados. Um dos mais importantes modelos de classificação, denominado 1-NN, utiliza uma função de distância para comparar uma série temporal de interesse a um conjunto de referência, atribuindo à primeira o rótulo da série de referência mais semelhante. Entretanto, existem situações nas quais os dados temporais são insuficientes para identificar vizinhos de acordo com o conceito associado às classes. Uma possível abordagem é transportar as séries para um domínio de representação no qual atributos mais relevantes para a classificação são mais claros. Por exemplo, uma série temporal pode ser decomposta em componentes periódicas de diferentes frequências e amplitudes. Para muitas aplicações, essas componentes são muito mais significativas na discriminação das classes do que a evolução da série ao longo do tempo. Nesta Tese, emprega-se diversidade de representações e de distâncias para a classificação de séries temporais. Com base na escolha de uma representação de dados adequada para expor as características discriminativas do domínio, pode-se obter classificadores mais fiéis ao conceitoalvo. Para esse fim, promove-se um estudo de domínios de representação de dados temporais, visando identificar como esses domínios podem estabelecer espaços alternativos de decisão. Diferentes modelos do classificador 1-NN são avaliados isoladamente e associados em ensembles de classificadores a fim de se obter classificadores mais robustos. Funções de distância e domínios alternativos de representação são também utilizados neste trabalho para produzir atributos não temporais, denominados atributos de distâncias. Esses atributos refletem conceitos de vizinhança aos exemplos do conjunto de treinamento e podem ser utilizados para treinar modelos de classificação que tipicamente não são eficazes quando treinados com as observações originais. Nesta Tese mostra-se que atributos de distância permitem obter resultados compatíveis com o estado-da-arte. / Temporal data are ubiquitous in nearly all areas of human knowledge. The research field known as machine learning has contributed to temporal data mining with algorithms for classification, clustering, anomaly or exception detection, and motif detection, among others. These algorithms oftentimes are reliant on a distance function that must be capable of expressing a similarity concept among the data. One of the most important classification models, the 1-NN, employs a distance function when comparing a time series of interest against a reference set, and assigns to the former the label of the most similar reference time series. There are, however, several domains in which the temporal data are insufficient to characterize neighbors according to the concepts associated to the classes. One possible approach to this problem is to transform the time series into a representation domain in which the meaningful attributes for the classifier are more clearly expressed. For instance, a time series may be decomposed into periodic components of different frequency and amplitude values. For several applications, those components are much more meaningful in discriminating the classes than the temporal evolution of the original observations. In this work, we employ diversity of representation and distance functions for the classification of time series. By choosing a data representation that is more suitable to express the discriminating characteristics of the domain, we are able to achieve classification that are more faithful to the target-concept. With this goal in mind, we promote a study of time series representation domains, and we evaluate how such domains can provide alternative decision spaces. Different models of the 1-NN classifier are evaluated both isolated and associated in classification ensembles in order to construct more robust classifiers. We also use distance functions and alternative representation domains in order to extract nontemporal attributes, known as distance features. Distance features reflect neighborhood concepts of the instances to the training samples, and they may be used to induce classification models which are typically not as efficient when trained with the original time series observations. We show that distance features allow for classification results compatible with the state-of-the-art.
4

Classicação de séries temporais utilizando diferentes representações de dados e ensembles / Time series classification using multiple representations and ensembles

Rafael Giusti 23 August 2017 (has links)
Dados temporais são ubíquos em quase todas as áreas do conhecimento humano. A área de aprendizado de máquina tem contribuído para a mineração desse tipo de dados com algoritmos para classificação, agrupamento, detecção de anomalias ou exceções e detecção de padrões recorrentes, dentre outros. Tais algoritmos dependem, muitas vezes, de uma função capaz de expressar um conceito de similaridade entre os dados. Um dos mais importantes modelos de classificação, denominado 1-NN, utiliza uma função de distância para comparar uma série temporal de interesse a um conjunto de referência, atribuindo à primeira o rótulo da série de referência mais semelhante. Entretanto, existem situações nas quais os dados temporais são insuficientes para identificar vizinhos de acordo com o conceito associado às classes. Uma possível abordagem é transportar as séries para um domínio de representação no qual atributos mais relevantes para a classificação são mais claros. Por exemplo, uma série temporal pode ser decomposta em componentes periódicas de diferentes frequências e amplitudes. Para muitas aplicações, essas componentes são muito mais significativas na discriminação das classes do que a evolução da série ao longo do tempo. Nesta Tese, emprega-se diversidade de representações e de distâncias para a classificação de séries temporais. Com base na escolha de uma representação de dados adequada para expor as características discriminativas do domínio, pode-se obter classificadores mais fiéis ao conceitoalvo. Para esse fim, promove-se um estudo de domínios de representação de dados temporais, visando identificar como esses domínios podem estabelecer espaços alternativos de decisão. Diferentes modelos do classificador 1-NN são avaliados isoladamente e associados em ensembles de classificadores a fim de se obter classificadores mais robustos. Funções de distância e domínios alternativos de representação são também utilizados neste trabalho para produzir atributos não temporais, denominados atributos de distâncias. Esses atributos refletem conceitos de vizinhança aos exemplos do conjunto de treinamento e podem ser utilizados para treinar modelos de classificação que tipicamente não são eficazes quando treinados com as observações originais. Nesta Tese mostra-se que atributos de distância permitem obter resultados compatíveis com o estado-da-arte. / Temporal data are ubiquitous in nearly all areas of human knowledge. The research field known as machine learning has contributed to temporal data mining with algorithms for classification, clustering, anomaly or exception detection, and motif detection, among others. These algorithms oftentimes are reliant on a distance function that must be capable of expressing a similarity concept among the data. One of the most important classification models, the 1-NN, employs a distance function when comparing a time series of interest against a reference set, and assigns to the former the label of the most similar reference time series. There are, however, several domains in which the temporal data are insufficient to characterize neighbors according to the concepts associated to the classes. One possible approach to this problem is to transform the time series into a representation domain in which the meaningful attributes for the classifier are more clearly expressed. For instance, a time series may be decomposed into periodic components of different frequency and amplitude values. For several applications, those components are much more meaningful in discriminating the classes than the temporal evolution of the original observations. In this work, we employ diversity of representation and distance functions for the classification of time series. By choosing a data representation that is more suitable to express the discriminating characteristics of the domain, we are able to achieve classification that are more faithful to the target-concept. With this goal in mind, we promote a study of time series representation domains, and we evaluate how such domains can provide alternative decision spaces. Different models of the 1-NN classifier are evaluated both isolated and associated in classification ensembles in order to construct more robust classifiers. We also use distance functions and alternative representation domains in order to extract nontemporal attributes, known as distance features. Distance features reflect neighborhood concepts of the instances to the training samples, and they may be used to induce classification models which are typically not as efficient when trained with the original time series observations. We show that distance features allow for classification results compatible with the state-of-the-art.

Page generated in 0.1259 seconds