• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • Tagged with
  • 5
  • 5
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Empirical analysis of imbalance countering strategies in binary classification

Gingras, Jonathan 02 February 2024 (has links)
De nos jours, les algorithmes de classification binaire sont utilisés dans des tâches touchant plusieurs champs d’applications comme les fraudes en-ligne, le dépistage bio-médical ou bien la toxicité en-ligne. Malgré le nombre de données qui est souvent disponible pour ces applications, qui viennent habituellement de source réelles, une particularité y est fréquemment observée: la représentation débalancée des classes. Cette imbalance demeure un problème d’envergure pour les algorithmes de classification, car la vaste majorité d’entre eux ne sont pas conçus avec cette représentation inégale à l’esprit. De plus, dans les paramètres expérimentaux, les données sur lesquelles ils sont appliqués sont souvent bien balancées, à cause de la finalité-même de ces expérimentations. Dans le présent mémoire, une revue des stratégies et techniques existantes pour contrer l’imbalance binaire est proposée, dans laquelle un point de vue par modification de données ainsi qu’un point de vue par modification algorithmique seront adressés. Le premier sujet des présents travaux consiste en les approches de pré-traitement et leurs effets sur les métriques de classification, dans lequel des expérimentations contrôlées (présentant différents niveaux de débalancement) et des applications d’entreprises sont présentées et analysées. Le second sujet consiste en le paradigme sensible-au-coût appliqué à l’optimisation directe de la métrique de la F-mesure en utilisant un réseau de neurones, dans lequel des expérimentations sur un jeu de données très débalancé sont présentées et discutées, le tout accompagné d’une comparaison avec différents paramètres usuels. À la lecture du présent document, le lecteur aura une bonne idée des techniques de prétraitement existantes et ce qu’on peut en retirer d’un point de vue expérimental selon des ensembles de données variés. Également, l’application du paradigme sensible-au-coût par optimisation de la F-mesure donnera un aperçu positif quant au point de vue algorithmique dans un contexte de données très débalancées. / Nowadays, binary classification algorithms are used in detection-related tasks touching many fields of application such as online frauds, biomedical screening, or online toxicity. Despite the amount of data that’s usually available for those applications, which habitually comes from real-world data sources, a particularity is frequently observed in it: the imbalanced representation of the classes. This imbalance remains a significant problem for binary classification algorithms, because the vast majority of these algorithms are not designed with this unequal representation in mind. Moreover, in experimental setups, the data on which they are usually applied is more than often well-balanced, because of the very purpose of these experiments. In the current thesis, a review of the existing strategies and techniques to face the binary imbalance problem is proposed in which both a data-modification point of view and a algorithmmodification point of view are addressed. The first subject of this work are data prepocessing approaches and their effects on classification metrics, in which both controlled experimental setups (showing different levels of imbalance), and enterprise data applications are presented and analyzed. The second subject is the cost-sensitive paradigm applied to the direct optimization of the F-measure metric using a neural network, in which experimentations on a highly imbalanced data set are presented and discussed, as well as comparisons with different common settings. After reading the current document, the reader will be well aware of the existing preprocessing techniques and what they can be achieve in an experimental context using various data sets. Moreover, the application of the cost-sensitive paradigm by optimization of the F-measure will give positive insight regarding the algorithmic point of view in a context of very imbalanced data.
2

Personalized large scale classification of public tenders on hadoop

Dumoulin, Mathieu 20 April 2018 (has links)
Ce projet a été réalisé dans le cadre d’un partenariat entre Fujitsu Canada et Université Laval. Les besoins du projets ont été centrés sur une problématique d’affaire définie conjointement avec Fujitsu. Le projet consistait à classifier un corpus d’appels d’offres électroniques avec une approche orienté big data. L’objectif était d’identifier avec un très fort rappel les offres pertinentes au domaine d’affaire de l’entreprise. Après une séries d’expérimentations à petite échelle qui nous ont permise d’illustrer empiriquement (93% de rappel) l’efficacité de notre approche basé sur l’algorithme BNS (Bi-Normal Separation), nous avons implanté un système complet qui exploite l’infrastructure technologique big data Hadoop. Nos expérimentations sur le système complet démontrent qu’il est possible d’obtenir une performance de classification tout aussi efficace à grande échelle (91% de rappel) tout en exploitant les gains de performance rendus possible par l’architecture distribuée de Hadoop. / This project was completed as part of an innovation partnership with Fujitsu Canada and Université Laval. The needs and objectives of the project were centered on a business problem defined jointly with Fujitsu. Our project aimed to classify a corpus of electronic public tenders based on state of the art Hadoop big data technology. The objective was to identify with high recall public tenders relevant to the IT services business of Fujitsu Canada. A small scale prototype based on the BNS algorithm (Bi-Normal Separation) was empirically shown to classify with high recall (93%) the public tender corpus. The prototype was then re-implemented on a full scale Hadoop cluster using Apache Pig for the data preparation pipeline and using Apache Mahout for classification. Our experimentation show that the large scale system not only maintains high recall (91%) on the classification task, but can readily take advantage of the massive scalability gains made possible by Hadoop’s distributed architecture.
3

Sentiment classification with case-base approach

Torabian, Bibizeinab 24 April 2018 (has links)
L'augmentation de la croissance des réseaux, des blogs et des utilisateurs des sites d'examen sociaux font d'Internet une énorme source de données, en particulier sur la façon dont les gens pensent, sentent et agissent envers différentes questions. Ces jours-ci, les opinions des gens jouent un rôle important dans la politique, l'industrie, l'éducation, etc. Alors, les gouvernements, les grandes et petites industries, les instituts universitaires, les entreprises et les individus cherchent à étudier des techniques automatiques fin d’extraire les informations dont ils ont besoin dans les larges volumes de données. L’analyse des sentiments est une véritable réponse à ce besoin. Elle est une application de traitement du langage naturel et linguistique informatique qui se compose de techniques de pointe telles que l'apprentissage machine et les modèles de langue pour capturer les évaluations positives, négatives ou neutre, avec ou sans leur force, dans des texte brut. Dans ce mémoire, nous étudions une approche basée sur les cas pour l'analyse des sentiments au niveau des documents. Notre approche basée sur les cas génère un classificateur binaire qui utilise un ensemble de documents classifies, et cinq lexiques de sentiments différents pour extraire la polarité sur les scores correspondants aux commentaires. Puisque l'analyse des sentiments est en soi une tâche dépendante du domaine qui rend le travail difficile et coûteux, nous appliquons une approche «cross domain» en basant notre classificateur sur les six différents domaines au lieu de le limiter à un seul domaine. Pour améliorer la précision de la classification, nous ajoutons la détection de la négation comme une partie de notre algorithme. En outre, pour améliorer la performance de notre approche, quelques modifications innovantes sont appliquées. Il est intéressant de mentionner que notre approche ouvre la voie à nouveaux développements en ajoutant plus de lexiques de sentiment et ensembles de données à l'avenir. / Increasing growth of the social networks, blogs, and user review sites make Internet a huge source of data especially about how people think, feel, and act toward different issues. These days, people opinions play an important role in the politic, industry, education, etc. Thus governments, large and small industries, academic institutes, companies, and individuals are looking for investigating automatic techniques to extract their desire information from large amount of data. Sentiment analysis is one true answer to this need. Sentiment analysis is an application of natural language processing and computational linguistic that consists of advanced techniques such as machine learning and language model approaches to capture the evaluative factors such as positive, negative, or neutral, with or without their strength, from plain texts. In this thesis we study a case-based approach on cross-domain for sentiment analysis on the document level. Our case-based algorithm generates a binary classifier that uses a set of the processed cases, and five different sentiment lexicons to extract the polarity along the corresponding scores from the reviews. Since sentiment analysis inherently is a domain dependent task that makes it problematic and expensive work, we use a cross-domain approach by training our classifier on the six different domains instead of limiting it to one domain. To improve the accuracy of the classifier, we add negation detection as a part of our algorithm. Moreover, to improve the performance of our approach, some innovative modifications are applied. It is worth to mention that our approach allows for further developments by adding more sentiment lexicons and data sets in the future.
4

Classification fine par réseau de neurones à convolution

Carpentier, Mathieu 07 August 2019 (has links)
L’intelligence artificielle est un domaine de recherche relativement récent. Grâce à lui, plusieurs percées ont été faites sur une série de problèmes qui étaient autrefois considérés comme très difficiles. La classification fine est l’un de ces problèmes. Cependant, même si résoudre cette tâche pourrait représenter des avancées tant au niveau scientifique qu’au niveau industriel, peu de recherche y a été effectué. Dans ce mémoire, nous abordons la problématique de l’application de la classification fine sur des problèmes concrets, soit la classification d’essence d’arbres uniquement grâce à des images de l’écorce et la classification visuelle des moisissures en culture. Nous commençons par présenter plusieurs concepts sur lesquels se basent l’apprentissage profond, à la base de notre solution ainsi que plusieurs expériences qui ont été menées afin de tenter de résoudre le problème de classification d’essence d’arbres à partir d’images de l’écorce. Par la suite, nous détaillons le jeu de données nommé BarkNet 1. 0 que nous avons construit dans le cadre de ce projet. Grâce à celui-ci, nous avons été en mesure de développer une méthode permettant d’obtenir une précision de 93,88% en utilisant une seule crop aléatoire dans une image et une précision de 97,81% en utilisant un vote de majorité sur toutes les images d’un arbre. Finalement, nous concluons en démontrant la faisabilité d’appliquer notre méthode dans d’autres contextes en montrant quelques applications concrètes sur lesquelles nous l’avons essayée, soit la classification d’essence d’arbres en industrie et la classification de moisissures. / Artificial intelligence is a relatively recent research domain. With it, many breakthroughs were made on a number of problems that were considered very hard. Fine-grained classification is one of those problems. However, a relatively small amount of research has been done on this task even though itcould represent progress on a scientific, commercial and industrial level. In this work, we talk about applying fine-grained classification on concrete problems such as tree bark classification and mould classification in culture. We start by presenting fundamental deep learning concepts at the root of our solution. Then, we present multiple experiments made in order to try to solve the tree bark classification problem and we detail the novel dataset BarkNet 1.0 that we made for this project. With it, we were able to develop a method that obtains an accuracy of 93.88% on singlecrop in a single image, and an accuracy of 97.81% using a majority voting approach on all the images of a tree. We conclude by demonstrating the feasibility of applying our method on new problems by showing two concrete applications on which we tried our approach, industrial tree classification and mould classification.
5

On the use of multicriteria ranking methods in sorting problems / Utilisation des méthodes de rangements multicritères dans les problèmes de tri

Nemery De Bellevaux, Philippe 29 November 2008 (has links)
Notre thèse est consacrée à l’étude des méthodes de rangements multicritères dans le cadre de la problématique de tri.<p> <p>Dans un problème de tri une personne, appelée décideur, désire assigner un objet, appelé action, à des catégories prédéfinies. Des problèmes de tri surgissent régulièrement dans la vie de tous les jours. Par exemple, un médecin ausculte son patient et sur base des symptômes observés, il assigne son patient à une catégorie de pathologies. Ainsi, le médecin peut prescrire un traitement approprié. Par ailleurs, on catégorise les cyclones tropicaux en fonction de leur vitesse, pression superficielle et de la hauteur de marée. En fonction de la catégorie du cyclone, des dégâts éventuels peuvent être prédits et des mesures de protection adéquates devront être prises. <p> <p>Dans un problème de tri, un décideur regroupe ainsi les actions qu’il considère similaires, à des fins descriptives, organisationnelles ou préventives. Nous supposerons en outre que le décideur exprime une relation de préférence entre les classes préalablement définies.<p> <p>D’autre part, les méthodes de rangement permettent de ranger les actions de la meilleure à la moins bonne. Nul étudiant ne peut nier l’existence des " rankings " d’universités. Une société ordonne les candidats à l’issue d’un entretien d’embauche. Une société désire par ailleurs établir des partenariats avec les fournisseurs les plus performants. Nous sommes tous confrontés à cette tâche délicate de ranger les actions de la meilleure à la moins bonne. Les méthodes d’aide à la décision proposent des techniques permettant à un décideur d’obtenir un rangement d’actions.<p> <p>L’objectif de cette thèse est d’étudier la possibilité de résoudre des problèmes de tri à l’aide de méthodes de rangement. L’approche adoptée est de ranger une action particulière par rapport à des normes ou profils définissant les catégories. L’assignation de l’action sera dès lors basée sur sa position dans ce rangement particulier.<p> <p>Quelles sont les hypothèses nécessaires pour un tel modèle ?Ces méthodes présentent-elles un biais ou ont-elles d’autres avantages par rapport aux méthodes de tri existantes? Est-il préférable de modéliser les catégories à l’aide de critères même si celles-ci ne présentent pas de relation de préférence ?Dans cette thèse nous donnerons des premiers éléments de réponse en développant de nouvelles méthodes de tri basées sur des méthodes de rangement existantes.<p> <p><p> / Doctorat en Sciences de l'ingénieur / info:eu-repo/semantics/nonPublished

Page generated in 0.6819 seconds