• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Influência de erros de classificação num modelo estocástico para evolução da prevalência da esquistossomose / Influence of classification errors in a stochastic model for evolution of the prevalence of schistosomiasis

Camargo, Vera Lucia Richter Ferreira de 28 September 1979 (has links)
O presente trabalho é uma formulação teórica que permite estudar num modelo estocástico, a influência dos erros de classificação na mensuração da prevalência da esquistossomose mansônica. Os erros de classificação são desagregados e identificados como: falhas de leitura por parte do examinador ou preparo inadequado da lâmina; contingências biológicas que possibilitam o aparecimento de ovos não viáveis e a eliminação de ovos contínua por parte dos indivíduos. É apresentada uma solução geral para o problema, bem como soluções para os casos em que se conhece a distribuição de probabilidades do número de ovos de S.mansoni. Uma solução aproximada e independente da forma e dependente dos dois primeiros momentos da distribuição do número de ovos é sugerida. A influência dos erros de classificação pode quantitativamente ser apreciada, através de um conjunto de tabelas elaboradas com diversos valores dos parâmetros intervenientes no problema. / The present paper is a theoretical approach which will, allow studying the influence - in a stochastic model - of errors in classifying the measurement of the prevalence of Schistosomiasis mansoni. The misclassification errors considered are due to: (A) failure of the examiner in either (1) reading or (2) poor technique. (B) biological contingences which will allow for the appearence of (1) sterile eggs, or (2) discontinuity in the elimination of eggs by the carriers. An exact general solution of the problem is presented, as well as solutions for the particular cases in which the probability distribution of S.mansoni eggs counts in known. An approximate solution is suggested, which is independent from the way in which the number of eggs is distributed, but depends upon the first two moments of the probability distribution of the eggs counts. The influence of misclassification errors can be judged in a quantitative way, by means of a set of tables mande up for the different parametric values of the problem.
2

Influência de erros de classificação num modelo estocástico para evolução da prevalência da esquistossomose / Influence of classification errors in a stochastic model for evolution of the prevalence of schistosomiasis

Vera Lucia Richter Ferreira de Camargo 28 September 1979 (has links)
O presente trabalho é uma formulação teórica que permite estudar num modelo estocástico, a influência dos erros de classificação na mensuração da prevalência da esquistossomose mansônica. Os erros de classificação são desagregados e identificados como: falhas de leitura por parte do examinador ou preparo inadequado da lâmina; contingências biológicas que possibilitam o aparecimento de ovos não viáveis e a eliminação de ovos contínua por parte dos indivíduos. É apresentada uma solução geral para o problema, bem como soluções para os casos em que se conhece a distribuição de probabilidades do número de ovos de S.mansoni. Uma solução aproximada e independente da forma e dependente dos dois primeiros momentos da distribuição do número de ovos é sugerida. A influência dos erros de classificação pode quantitativamente ser apreciada, através de um conjunto de tabelas elaboradas com diversos valores dos parâmetros intervenientes no problema. / The present paper is a theoretical approach which will, allow studying the influence - in a stochastic model - of errors in classifying the measurement of the prevalence of Schistosomiasis mansoni. The misclassification errors considered are due to: (A) failure of the examiner in either (1) reading or (2) poor technique. (B) biological contingences which will allow for the appearence of (1) sterile eggs, or (2) discontinuity in the elimination of eggs by the carriers. An exact general solution of the problem is presented, as well as solutions for the particular cases in which the probability distribution of S.mansoni eggs counts in known. An approximate solution is suggested, which is independent from the way in which the number of eggs is distributed, but depends upon the first two moments of the probability distribution of the eggs counts. The influence of misclassification errors can be judged in a quantitative way, by means of a set of tables mande up for the different parametric values of the problem.
3

Essays on categorical and universal welfare provision : design, optimal taxation and enforcement issues

Slack, Sean Edward January 2016 (has links)
Part I comprises three chapters (2-4) that analyse the optimal combination of a universal benefit (B≥0) and categorical benefit (C≥0) for an economy where individuals differ in both their ability to work and, if able to work, their productivity. C is ex-ante conditioned on applicants being unable to work, and ex-post conditioned on recipients not working. In Chapter 2 the benefit budget is fixed but the test awarding C makes Type I and Type II errors. Type I errors guarantee B > 0 at the optimum to ensure all unable individuals have positive consumption. The analysis with Type II errors depends on the enforcement of the ex-post condition. Under No Enforcement C > 0 at the optimum conditional on the awards test having some discriminatory power; whilst maximum welfare falls with both error propensities. Under Full Enforcement C > 0 at the optimum always; and whilst maximum welfare falls with the Type I error propensity it may increase with the Type II error propensity. Chapters 3 and 4 generalise the analysis to a linear-income tax framework. In Chapter 3 categorical status is perfectly observable. Optimal linear and piecewise-linear tax expressions are written more generally to capture cases where it is suboptimal to finance categorical transfers to eliminate inequality in the average social marginal value of income. Chapter 4 then derives the optimal linear income tax for the case with classification errors and Full Enforcement. Both equity and efficiency considerations capture the incentives an increase in the tax rate generates for able individuals to apply for C. Part II (Chapter 5) focuses on the decisions of individuals to work when receiving C, given a risk of being detected and fined proportional to C. Under CARA preferences the risk premium associated with the variance in benefit income is convex-increasing in C, thus giving C a role in enforcement.

Page generated in 0.114 seconds