Spelling suggestions: "subject:"1classification dde lla para"" "subject:"1classification dde laa para""
1 |
Algorithms for classifying recorded music by genreBergstra, James January 2006 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
|
2 |
Contribution à la détection et à l'analyse des signaux EEG épileptiques : débruitage et séparation de sourcesRomo-Vázquez, Rebeca 24 February 2010 (has links) (PDF)
L'objectif principal de cette thèse est le pré-traitement des signaux d'électroencéphalographie (EEG). En particulier, elle vise à développer une méthodologie pour obtenir un EEG dit "propre" à travers l'identification et l'élimination des artéfacts extra-cérébraux (mouvements oculaires, clignements, activité cardiaque et musculaire) et du bruit. Après identification, les artéfacts et le bruit doivent être éliminés avec une perte minimale d'information, car dans le cas d'EEG, il est de grande importance de ne pas perdre d'information potentiellement utile à l'analyse (visuelle ou automatique) et donc au diagnostic médical. Plusieurs étapes sont nécessaires pour atteindre cet objectif : séparation et identification des sources d'artéfacts, élimination du bruit de mesure et reconstruction de l'EEG "propre". A travers une approche de type séparation aveugle de sources (SAS), la première partie vise donc à séparer les signaux EEG dans des sources informatives cérébrales et des sources d'artéfacts extra-cérébraux à éliminer. Une deuxième partie vise à classifier et éliminer les sources d'artéfacts et elle consiste en une étape de classification supervisée. Le bruit de mesure, quant à lui, il est éliminé par une approche de type débruitage par ondelettes. La mise en place d'une méthodologie intégrant d'une manière optimale ces trois techniques (séparation de sources, classification supervisée et débruitage par ondelettes) constitue l'apport principal de cette thèse. La méthodologie développée, ainsi que les résultats obtenus sur une base de signaux d'EEG réels (critiques et inter-critiques) importante, sont soumis à une expertise médicale approfondie, qui valide l'approche proposée.
|
3 |
Vers une adaptation autonome des modèles acoustiques multilingues pour le traitement automatique de la paroleSam, Sethserey 07 June 2011 (has links) (PDF)
Les technologies de reconnaissance automatique de la parole sont désormais intégrées dans de nombreux systèmes. La performance des systèmes de reconnaissance vocale pour les locuteurs non natifs continue cependant à souffrir de taux d'erreur élevés, en raison de la différence entre la parole non native et les modèles entraînés. La réalisation d'enregistrements en grande quantité de parole non native est généralement une tâche très difficile et peu réaliste pour représenter toutes les origines des locuteurs. Ce travail de thèse porte sur l'amélioration des modèles acoustiques multilingues pour la transcription phonétique de la parole de type " réunion multilingue ". Traiter ce type de parole constitue plusieurs défis : 1) il peut exister de la conversation entre des locuteurs natifs et non natifs ; 2) il y a non seulement de la parole non native d'une langue, mais de plusieurs langues parlées par des locuteurs venant de différentes origines ; 3) il est difficile de collecter suffisamment de données pour amorcer les systèmes de transcription. Pour répondre à ces défis, nous proposons un processus d'adaptation de modèles acoustiques multilingues que nous appelons " adaptation autonome ". Dans l'adaptation autonome, nous étudions plusieurs approches pour adapter les modèles acoustiques multilingues de manière non supervisée (les langues parlées et les origines des locuteurs ne sont pas connues à l'avance) et qui n'utilise aucune donnée supplémentaire lors du processus d'adaptation. Les approches étudiées sont décomposées selon deux modules. Le premier module qui s'appelle " l'observateur de langues " consiste à récupérer les caractéristiques linguistiques (les langues parlées et les origines des locuteurs) des segments à décoder. Le deuxième module consiste à adapter le modèle acoustique multilingue en fonction des connaissances fournies par l'observateur de langue. Pour évaluer l'utilité de l'adaptation autonome d'un modèle acoustique multilingue, nous utilisons les données de test, qui sont extraites de réunions multilingues, contenant de la parole native et non native de trois langues : l'anglais (EN), le français (FR) et le vietnamien (VN). Selon les résultats d'expérimentation, l'adaptation autonome donne des résultats prometteurs pour les paroles non natives mais dégradent très légèrement les performances sur de la parole native. Afin d'améliorer la performance globale des systèmes de transcription pour toutes les paroles natives et non natives, nous étudions plusieurs approches de détection de parole non native et proposons de cascader un tel détecteur avec notre processus d'adaptation autonome. Les résultats obtenus ainsi, sont les meilleurs parmi toutes les expériences réalisées sur notre corpus de réunions multilingues.
|
4 |
Vers une adaptation autonome des modèles acoustiques multilingues pour le traitement automatique de la parole / Towards autonomous adaptation of multilingual acoustic models for automatic speech processingSam, Sethserey 07 June 2011 (has links)
Les technologies de reconnaissance automatique de la parole sont désormais intégrées dans de nombreux systèmes. La performance des systèmes de reconnaissance vocale pour les locuteurs non natifs continue cependant à souffrir de taux d'erreur élevés, en raison de la différence entre la parole non native et les modèles entraînés. La réalisation d'enregistrements en grande quantité de parole non native est généralement une tâche très difficile et peu réaliste pour représenter toutes les origines des locuteurs. Ce travail de thèse porte sur l'amélioration des modèles acoustiques multilingues pour la transcription phonétique de la parole de type « réunion multilingue ». Traiter ce type de parole constitue plusieurs défis : 1) il peut exister de la conversation entre des locuteurs natifs et non natifs ; 2) il y a non seulement de la parole non native d'une langue, mais de plusieurs langues parlées par des locuteurs venant de différentes origines ; 3) il est difficile de collecter suffisamment de données pour amorcer les systèmes de transcription. Pour répondre à ces défis, nous proposons un processus d'adaptation de modèles acoustiques multilingues que nous appelons « adaptation autonome ». Dans l'adaptation autonome, nous étudions plusieurs approches pour adapter les modèles acoustiques multilingues de manière non supervisée (les langues parlées et les origines des locuteurs ne sont pas connues à l'avance) et qui n'utilise aucune donnée supplémentaire lors du processus d'adaptation. Les approches étudiées sont décomposées selon deux modules. Le premier module qui s'appelle « l'observateur de langues » consiste à récupérer les caractéristiques linguistiques (les langues parlées et les origines des locuteurs) des segments à décoder. Le deuxième module consiste à adapter le modèle acoustique multilingue en fonction des connaissances fournies par l'observateur de langue. Pour évaluer l'utilité de l'adaptation autonome d'un modèle acoustique multilingue, nous utilisons les données de test, qui sont extraites de réunions multilingues, contenant de la parole native et non native de trois langues : l'anglais (EN), le français (FR) et le vietnamien (VN). Selon les résultats d'expérimentation, l'adaptation autonome donne des résultats prometteurs pour les paroles non natives mais dégradent très légèrement les performances sur de la parole native. Afin d'améliorer la performance globale des systèmes de transcription pour toutes les paroles natives et non natives, nous étudions plusieurs approches de détection de parole non native et proposons de cascader un tel détecteur avec notre processus d'adaptation autonome. Les résultats obtenus ainsi, sont les meilleurs parmi toutes les expériences réalisées sur notre corpus de réunions multilingues. / Automatic speech recognition technologies are now integrated into many systems. The performance of speech recognition systems for non-native speakers, however, continues to suffer high error rates, due to the difference between native and non-speech models trained. The making of recordings in large quantities of non-native speech is typically a very difficult and impractical to represent all the origins of the speakers. This thesis focuses on improving multilingual acoustic models for automatic phonetic transcription of speech such as “multilingual meeting”. There are several challenges in “multilingual meeting” speech: 1) there can be a conversation between native and non native speakers ; 2) there is not only one spoken language but several languages spoken by speakers from different origins ; 3) it is difficult to collect sufficient data to bootstrapping transcription systems. To meet these challenges, we propose a process of adaptation of multilingual acoustic models is called "autonomous adaptation". In autonomous adaptation, we studied several approaches for adapting multilingual acoustic models in unsupervised way (spoken languages and the origins of the speakers are not known in advance) and no additional data is used during the adaptation process. The approaches studied are decomposed into two modules. The first module called "the language observer" is to recover the linguistic information (spoken languages and the origins of the speakers) of the segments to be decoded. The second module is to adapt the multilingual acoustic model based on knowledge provided by the language observer. To evaluate the usefulness of autonomous adaptation of multilingual acoustic model, we use the test data, which are extracted from multilingual meeting corpus, containing the native and nonnative speech of three languages: English (EN), French (FR) and Vietnamese (VN). According to the experiment results, the autonomous adaptation shows promising results for non native speech but very slightly degrade performance on native speech. To improve the overall performance of transcription systems for all native and non native speech, we study several approaches for detecting non native speech and propose such a detector cascading with our self-adaptation process (autonomous adaptation). The results thus are the best among all experiments done on our corpus of multilingual meetings.
|
Page generated in 0.1314 seconds