Spelling suggestions: "subject:"classification five"" "subject:"classification find""
1 |
Une méthode hybride pour la classification d'images à grain fin / An hybrid method for fine-grained content based image retrievalPighetti, Romaric 28 November 2016 (has links)
La quantité d'images disponible sur Internet ne fait que croître, engendrant un besoin d'algorithmes permettant de fouiller ces images et retrouver de l'information. Les systèmes de recherche d'images par le contenu ont été développées dans ce but. Mais les bases de données grandissant, de nouveaux défis sont apparus. Dans cette thèse, la classification à grain fin est étudiée en particulier. Elle consiste à séparer des images qui sont relativement semblables visuellement mais représentent différents concepts, et à regrouper des images qui sont différentes visuellement mais représentent le même concept. Il est montré dans un premier temps que les techniques classiques de recherche d'images par le contenu rencontrent des difficultés à effectuer cette tâche. Même les techniques utilisant les machines à vecteur de support (SVM), qui sont très performants pour la classification, n'y parviennent pas complètement. Ces techniques n'explorent souvent pas assez l'espace de recherche pour résoudre ce problème. D'autres méthodes, comme les algorithmes évolutionnaires sont également étudiées pour leur capacité à identifier des zones intéressantes de l'espace de recherche en un temps raisonnable. Toutefois, leurs performances restent encore limitées. Par conséquent, l'apport de la thèse consiste à proposer un système hybride combinant un algorithme évolutionnaire et un SVM a finalement été développé. L'algorithme évolutionnaire est utilisé pour construire itérativement un ensemble d'apprentissage pour le SVM. Ce système est évalué avec succès sur la base de données Caltech-256 contenant envieront 30000 images réparties en 256 catégories / Given the ever growing amount of visual content available on the Internet, the need for systems able to search through this content has grown. Content based image retrieval systems have been developed to address this need. But with the growing size of the databases, new challenges arise. In this thesis, the fine grained classification problem is studied in particular. It is first shown that existing techniques, and in particular the support vector machines which are one of the best image classification technique, have some difficulties in solving this problem. They often lack of exploration in their process. Then, evolutionary algorithms are considered to solve the problem, for their balance between exploration and exploitation. But their performances are not good enough either. Finally, an hybrid system combining an evolutionary algorithm and a support vector machine is proposed. This system uses the evolutionary algorithm to iteratively feed the support vector machine with training samples. The experiments conducted on Caltech-256, a state of the art database containing around 30000 images, show very encouraging results
|
2 |
Classification fine d'objets : identification d'espèces végétales / Fine-grained object categorization : plant species identificationRejeb Sfar, Asma 10 July 2014 (has links)
Nous étudions la problématique de classification dite fine en se concentrant sur la détermination des espèces botaniques à partir d’images de feuilles. Nous nous intéressons aussi bien à la description et la représentation de l’objet qu’aux algorithmes de classification et des scénarios d’identification utiles à l’utilisateur. Nous nous inspirons du processus manuel des botanistes pour introduire une nouvelle représentation hiérarchique des feuilles. Nous proposons aussi un nouveau mécanisme permettant d’attirer l’attention au tour de certains points caractéristiques de l’objet et d’apprendre des signatures spécifiques à chaque catégorie.Nous adoptons une stratégie de classification hiérarchique utilisant une série de classifieurs locaux allant des plus grossiers vers les plus fins; la classification locale étant basée sur des rapports de vraisemblance. L’algorithme fournit une liste d’estimations ordonnées selon leurs rapports de vraisemblance. Motivés par les applications, nous introduisons un autre scénario proposant à l’utilisateur un ensemble de confiance contenant la bonne espèce avec une probabilité très élevée. Un nouveau critère de performance est donc considéré : la taille de l’ensemble retourné. Nous proposons un modèle probabiliste permettant de produire de tels ensembles de confiance. Toutes les méthodes sont illustrées sur plusieurs bases de feuilles ainsi que des comparaisons avec les méthodes existantes. / We introduce models for fine-grained categorization, focusing on determining botanical species from leaf images. Images with both uniform and cluttered background are considered and several identification scenarios are presented, including different levels of human participation. Both feature extraction and classification algorithms are investigated. We first leverage domain knowledge from botany to build a hierarchical representation of leaves based on IdKeys, which encode invariable characteristics, and refer to geometric properties (i.e., landmarks) and groups of species (e.g., taxonomic categories). The main idea is to sequentially refine the object description and thus narrow down the set of candidates during the identification task. We also introduce vantage feature frames as a more generic object representation and a mechanism for focusing attention around several vantage points (where to look) and learning dedicated features (what to compute). Based on an underlying coarse-to-fine hierarchy, categorization then proceeds from coarse-grained to fine-grained using local classifiers which are based on likelihood ratios. Motivated by applications, we also introduce on a new approach and performance criterion: report a subset of species whose expected size is minimized subject to containing the true species with high probability. The approach is model-based and outputs a confidence set in analogy with confidence intervals in classical statistics. All methods are illustrated on multiple leaf datasets with comparisons to existing methods.
|
Page generated in 0.1372 seconds