• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Classifica??o de imagens de ambientes coralinos: uma abordagem empregando uma combina??o de classificadores e m?quina de vetor de suporte

Henriques, Ant?nio de P?dua de Miranda 08 August 2008 (has links)
Made available in DSpace on 2014-12-17T14:54:48Z (GMT). No. of bitstreams: 1 AntonioPMH.pdf: 3481703 bytes, checksum: 60ec6cc8df48e68b6c13c12104d289d6 (MD5) Previous issue date: 2008-08-08 / Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior / The use of the maps obtained from remote sensing orbital images submitted to digital processing became fundamental to optimize conservation and monitoring actions of the coral reefs. However, the accuracy reached in the mapping of submerged areas is limited by variation of the water column that degrades the signal received by the orbital sensor and introduces errors in the final result of the classification. The limited capacity of the traditional methods based on conventional statistical techniques to solve the problems related to the inter-classes took the search of alternative strategies in the area of the Computational Intelligence. In this work an ensemble classifiers was built based on the combination of Support Vector Machines and Minimum Distance Classifier with the objective of classifying remotely sensed images of coral reefs ecosystem. The system is composed by three stages, through which the progressive refinement of the classification process happens. The patterns that received an ambiguous classification in a certain stage of the process were revalued in the subsequent stage. The prediction non ambiguous for all the data happened through the reduction or elimination of the false positive. The images were classified into five bottom-types: deep water; under-water corals; inter-tidal corals; algal and sandy bottom. The highest overall accuracy (89%) was obtained from SVM with polynomial kernel. The accuracy of the classified image was compared through the use of error matrix to the results obtained by the application of other classification methods based on a single classifier (neural network and the k-means algorithm). In the final, the comparison of results achieved demonstrated the potential of the ensemble classifiers as a tool of classification of images from submerged areas subject to the noise caused by atmospheric effects and the water column / A utiliza??o de mapas, derivados da classifica??o de imagens de sensores remotos orbitais, tornou-se de fundamental import?ncia para viabilizar a??es de conserva??o e monitoramento de recifes de corais. Entretanto, a acur?cia atingida no mapeamento dessas ?reas ? limitada pelo efeito da varia??o da coluna d ?gua, que degrada o sinal recebido pelo sensor orbital e introduz erros no resultado final do processo de classifica??o. A limitada capacidade dos m?todos tradicionais, baseados em t?cnicas estat?sticas convencionais, para resolver este tipo de problema determinou a investiga??o de uma estrat?gia ligada ? ?rea da Intelig?ncia Computacional. Neste trabalho foi constru?do um conjunto de classificadores baseados em M?quinas de Vetor de Suporte e classificador de Dist?ncia M?nima, com o objetivo de classificar imagens de sensoriamento remoto de ecossistema de recifes de corais. O sistema ? composto por tr?s est?gios, atrav?s dos quais acontece o refinamento progressivo do processo de classifica??o. Os padr?es que receberam uma classifica??o amb?gua em uma determinada etapa do processo s?o reavaliados na etapa posterior. A predi??o n?o amb?gua para todos os dados aconteceu atrav?s da redu??o ou elimina??o dos falsos positivos. As imagens foram classificadas em cinco tipos de fundos: ?guas profundas, corais submersos, corais intermar?s, algas e fundo arenoso. A melhor acur?cia geral (89%) foi obtida quando foram utilizadas M?quinas de Vetor de Suporte com kernel polinomial. A acur?cia das imagens classificadas foi comparada, atrav?s da utiliza??o de matriz de erro, aos resultados alcan?ados pela aplica??o de outros m?todos de classifica??o baseados em um ?nico classificador (redes neurais e o algoritmo k-means). Ao final, a compara??o dos resultados alcan?ados demonstrou o potencial do conjunto de classificadores como instrumento de classifica??o de imagens de ?reas submersas, sujeitas aos ru?dos provocados pelos efeitos atmosf?ricos e da coluna d ?gua

Page generated in 0.0842 seconds