• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The terraces of the Conway Coast, North Canterbury: Geomorphology, sedimentary facies and sequence stratigraphy

McConnico, Tim January 2012 (has links)
A basin analysis was conducted at the Conway Flat coast (Marlborough Fault Zone, South Island, New Zealand) to investigate the interaction of regional and local structure in a transpressional plate boundary and its control on basin formation. A multi-tiered approach has been employed involving: (i) detailed analysis of sedimentary deposits; (ii) geomorphic mapping of terraces, fault traces and lineaments; (iii) dating of deposits by 14C and OSL and (iv) the integration of data to form a basin-synthesis in a sequence stratigraphy framework. A complex thrust fault zone (the Hawkswood Thrust Fault Zone), originating at the hinge of the thrust-cored Hawkswood anticline, is interpreted to be a result of west-dipping thrust faults joining at depth with the Hundalee Fault and propagating eastwards. The faults uplift and dissect alluvial fans to form terraces along the Conway Flat coast that provide the necessary relief to form the fan deltas. These terrace/fan surfaces are ~9 km long and ~3 km wide, composite features, with their upper parts representing sub-aerial alluvial fans. These grade into delta plains of Quaternary Gilbert-style fan deltas. Uplift and incision have created excellent 3D views of the underlying Gilbert-style fan delta complexes from topsets to prodelta deposits. Erosive contacts between the Medina, Rafa, Ngaroma and modern Conway fan delta deposits, coupled with changes in terrace elevations allow an understanding of the development of multiple inset terraces along the Conway Flat coast. These terraces are divided into five stages of evolution based on variations in sedimentary facies and geomorphic mapping: Stage I involves the uplift of the Hawkswood Range and subsequent increased sedimentation rate such that alluvial fans prograded to the sea to form the Medina fan delta Terrace. Stage II began with a period of incision, from lowering sea level or changes in the uplift and sedimentation rate and continued with the deposition of the Dawn and Upham fan deltas. Stage III starts with the incision of the Rafa Terrace and deposition of aggradational terraces in the upper reaches. Stage IV initiated by a period of incision followed by deposition of estuarine facies at ~8ka and Stage V began with a period of incision and continues today with the infilling of the incised valley by the modern fan delta of the Conway River and its continued progradation. New dates from within the Gilbert-type fan deltas along the Conway Flat coast are presented, using OSL and 14C dating techniques. Faulting at the Conway Flat coast began ~ 94 ka, based on the development of the Medina Terrace fan delta with uplift rates ~1.38~1.42 m/ka. The interplay of tectonics and sea level fluctuations continued as the ~79 ka Rafa Terrace fan deltas were created, with uplift rates calculated at ~1.39 m/ka. Detailed 14C ages from paleoforest (~8.4-~6.4 ka) in the Ngaroma Terrace and from the mouths of smaller streams have established uplift rates during the Holocene ~1-3 m/ka, depending on sea level.

Page generated in 0.325 seconds