• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 2
  • Tagged with
  • 24
  • 24
  • 10
  • 10
  • 9
  • 8
  • 8
  • 6
  • 6
  • 6
  • 6
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Comparison between automated and manual DSM pumping projects / R.P. Richter

Richter, Rudolph Petrus January 2008 (has links)
The purpose of this dissertation is to identify the best alternative method of load shifting on clear water pumping systems in the mining industry. This can be done through a comparison analysis between manual and automated Demand Side Management (DSM) projects. The study holds benefits for Eskom and any client wishing to participate in the program. Eskom, by choosing the best method, will ensure sustainable load shifting while the client benefits financially through lower electricity costs. In order to perform this study, research was conducted on the requirements for additional electricity supply in South Africa. Research showed that there is an urgent requirement for additional electricity supply to ensure continued economical growth. DSM was identified as one of the most favourable methods that could be implemented to address the problem. A reason for this is DSM projects are economically viable and can be implemented in a relatively short time. The initiative would also decrease the need for increasing electrical generation capacity. During the research study important information regarding the computation process for load shifting and cost saving performance was gathered. Research was also conducted on the effect of DSM on labour and maintenance cost reduction, as well as economical engineering methods that can be used for alternative selection. The difference in performance between automated and manual systems was compared. The results showed that a 40% improvement of automated systems over manual systems were attainable and sustainable. This will realise a total saving of approximately 45% in electricity costs for the client. Savings in labour and maintenance costs are shown to be achievable through the automation of pumping systems. These saving results were used in the Engineering Economic alternative selection methods where applicable. Economic calculations confirmed that automated projects are the most viable control method. From the comparison study, it is shown that automated controlled systems are more advantageous than manually controlled systems. It will therefore be in the best interest of the client to automate a manually controlled pumping system, as it will result in additional load shifting and cost saving. / Thesis (M.Ing. (Mechanical Engineering))--North-West University, Potchefstroom Campus, 2009.
12

Reduction of scour around circular piers using collars

Pandey, M., Pu, Jaan H., Pourshahbaz, H., Khan, M.A. 08 May 2022 (has links)
Yes / River dynamics and sediment transport play an important role in river bed morphology. Building a bridge pier along the river alters the cross-section of the river and causes the change in flow processes. These changes are mainly responsible for pier scour. In this paper, the usage of collars to reduce scour around circular piers has been investigated. The collars with different diameters and depth positions have been studied using previous data and additional data collected in the present study to assess their effectiveness in reducing scour. Using a wide range of measured data, an empirical equation to compute the maximum scour depth around the circular piers in the presence of collars has been proposed. The proposed equation has been validated and proven to be applicable to a wide range of pier layouts. It has been found that the maximum efficiency can be achieved by fixing the collar at bed level and adopting a collar diameter 1.5–2.5 times of pier diameter.
13

Analytical And Experimental Investigation Of Temporal Variation Of Clear Water Scour Depth At Bridge Abutments

Kose, Omer 01 June 2007 (has links) (PDF)
Computation of temporal variation of clear water scour is important for the design of bridge foundations. Previous studies conducted for determining equilibrium scour depth at bridge abutments indicated that very long flow duration was needed to achieve equilibrium scouring situations. However, the corresponding durations in the prototype conditions may yield considerably greater values than time to peak of the design flood. Therefore, there is a need to estimate the temporal variation of scour depth. An experimental study was carried out to observe temporal variation of scour depth and contours around vertical-wall and wing-wall abutments. The results of the experiments have been interpreted. A semi-empirical model has been developed for determining time-dependent variation of clear water scour depth at vertical-wall abutments. This approach is based on the application of sediment continuity equation to the scour hole around the vertical-wall abutment. To this end, time-dependent geometric features of the scour hole were investigated and a recent sediment pickup function was used to formulate the rate of sediment transport out of the scour hole. The results of the proposed model were compared with those of some empirical models. The findings of the model agree well with the experimental results.
14

Reliability-based Analysis Of Time-dependent Scouring At Bridge Abutments

Kerpicci Kara, Sibel 01 February 2009 (has links) (PDF)
Deterministic scour prediction equations for bridge abutments do not involve uncertainties coming from scouring parameters and they only consider effects of hydraulic parameters. However, in order to safely design bridge abutments, treatment of these uncertainties and evaluation of possible risks are required. Two artificial neural network (ANN) models are constructed to describe scouring phenomenon using the parameters of two different equations. The equation to be used in the reliability analysis is then determined according to ANN modeling results. To conduct reliability analysis, Monte Carlo simulation technique is used in which different distributions and coefficients of variations are used for random variables to examine their effects on reliability. It is observed that probability distributions of governing variables have no impact on reliability. However, coefficients of variations of these variables influence reliability.
15

Pier scour prediction in non-uniform gravel beds

Pandey, M., Oliveto, G., Pu, Jaan H., Sharma, P.K., Ojha, C.S.P. 28 July 2020 (has links)
Yes / Pier scour has been extensively studied in laboratory experiments. However, scour depth relationships based on data at the laboratory scale often yield unacceptable results when extended to field conditions. In this study, non-uniform gravel bed laboratory and field datasets with gravel of median size ranging from 2.7 to 14.25 mm were considered to predict the maximum equilibrium scour depth at cylindrical piers. Specifically, a total of 217 datasets were collected: 132 from literature sources and 85 in this study using new experiments at the laboratory scale, which constitute a novel contribution provided by this paper. From the analysis of data, it was observed that Melville and Coleman's equation performs well in the case of laboratory datasets, while it tends to overestimate field measurements. Guo's and Kim et al.'s relationships showed good agreements only for laboratory datasets with finer non-uniform sediments: deviations in predicting the maximum scour depth with non-uniform gravel beds were found to be significantly greater than those for non-uniform sand and fine gravel beds. Consequently, new K-factors for the Melville and Coleman's equation were proposed in this study for non-uniform gravel-bed streams using a curve-fitting method. The results revealed good agreements between observations and predictions, where this might be an attractive advancement in overcoming scale effects. Moreover, a sensitivity analysis was performed to identify the most sensitive K-factors.
16

Pier Scour Prediction in Non-Uniform Gravel Beds

Pandey, M., Olivetto, G., Pu, Jaan H., Sharma, P.K., Ojha, C.S.P. 16 June 2020 (has links)
Yes / Pier scour has been extensively studied in laboratory experiments. However, scour depth relationships based on data at the laboratory scale often yield unacceptable results when extended to field conditions. In this study, non-uniform gravel bed laboratory and field datasets with gravel of median size ranging from 2.7 to 14.25 mm were considered to predict the maximum equilibrium scour depth at cylindrical piers. Specifically, a total of 217 datasets were collected: 132 from literature sources and 85 in this study using new experiments at the laboratory scale, which constitute a novel contribution provided by this paper. From the analysis of data, it was observed that Melville and Coleman’s equation performs well in the case of laboratory datasets, while it tends to overestimate field measurements. Guo’s and Kim et al.’s relationships showed good agreements only for laboratory datasets with finer non-uniform sediments: deviations in predicting the maximum scour depth with non-uniform gravel beds were found to be significantly greater than those for non-uniform sand and fine gravel beds. Consequently, new K-factors for the Melville and Coleman’s equation were proposed in this study for non-uniform gravel-bed streams using a curve-fitting method. The results revealed good agreements between observations and predictions, where this might be an attractive advancement in overcoming scale effects. Moreover, a sensitivity analysis was performed to identify the most sensitive K-factors.
17

Experimental Investigation Of Local Scour Around Bridge Pier Groups

Ozalp, Murat Can 01 January 2013 (has links) (PDF)
It is an important task that design engineers in practice predict the local scour around bridge piers as accurately as possible because excessive local scour around bridge piers unbalance and demolish the bridges. Many equations have been proposed previously by various researchers, based on their experimental findings, but no general method has been developed so far due to the complexity of the topic. In the present study two new bridge pier groups were employed to investigate the inclination effect of the most upstream and downstream piers on the local scours around all piers. Total of 72 experiments have been conducted with 3 inclination angles, one of which representing the vertical case, each experiment lasting 6 hours, under uniform flow and clear-water conditions for a range of water depths and flow velocities on the uniform bed material. It is clearly observed and measured that the amount of local scour reduces substantially by the effect of inclination in the group piers, especially the reduction in the scour around the most upstream pier is found notable. Based on the experimental data, regression analyses are made and an empirical scour depth equation is developed for each individual pier in the pier groups studied. Comparisons with the similar studies performed by other researchers have been made and the results discussed.
18

Experimental Investigation Of Local Scour Around Inclined Dual Bridge Piers

Cesme, Murat 01 September 2005 (has links) (PDF)
For a bridge engineer, it is very important to estimate the maximum scour depth around the piers as accurately as possible, in order to design the footing safely. Many experimental studies have been performed by several investigators until now, in order to obtain information about scouring mechanism. The aim of this experimental study is to examine the effect of inclination of the dual bridge piers on scour depth. The experiments have been conducted with dual pier models under clear-water conditions, for various uniform flow depths. Scour depths had been measured at four different points around the piers / namely upstream and downstream faces of both piers. Dimensional and non-dimensional scour curves have been developed and presented to show the temporal variation of scour depth. The depths of local scour around inclined piers have been observed to be smaller than the scour depths around vertical piers.
19

Time development of local scour at a bridge pier fitted with a collar

Alabi, Patrick Dare 23 August 2006
A series of relatively recent bridge failures due to pier scour, as reported in literature, has rekindled interest in furthering our understanding of the scour process and for developing improved ways of protecting bridges against scour. Moreover, increased attention is being given to the state of Canadas infrastructure, a major aspect of which is the transportation network. In part, there is concern about both the impact of a failure on the handling of traffic flow while the failure is being remedied and on the cost of replacing the failed system component. As such, attention is being given to the scour design of new bridges and to the inspection, maintenance and management of existing bridge structures. The two major countermeasure techniques employed for preventing or minimising local scour at bridge piers are increased scour resistance and flow alteration. In the former case, the objective is to combat the erosive action of the scour-inducing mechanisms using hard engineering materials or physical barriers such as rock riprap. In the latter case, the objective is to either inhibit the formation of the scour-inducing mechanisms or to cause the scour to be shifted away from the immediate vicinity of the pier. This research focuses on a particular application of the latter technique. <p> In this study, the use of collars for reducing the effects of local scour at a bridge pier is presented together with the time aspect of the scour development. The adoption of a collar is based on the concept that its existence will sufficiently inhibit and/or deflect the local scour mechanisms so as to reduce the local scour immediately adjacent to the pier. The overall objective of the research is to study the temporal development of the scour for a pier fitted with a collar and a pier without a collar. More specifically, the objectives are: i) to evaluate the effectiveness of a pier collar for mitigating the depth of scour that would otherwise occur at a bridge pier; and ii) to assess the occurrence of an equilibrium scour condition, if achieved, or of the implications of not achieving such a condition in respect of interpreting the results obtained from a physical hydraulic model study. <p>The study was conducted using a physical hydraulic model operated under clear-water conditions in cohesionless bed material. Tests were conducted using two different pier diameters so as to determine the effect of pier diameter on the temporal development of scour for a plain pier. Also investigated was the effect of collar size on the time development of scour and its efficacy at preventing scour at a bridge pier. The time development of the scour hole around the model pier with and without a collar installed was compared with similar studies on bridge piers. Several equations for the temporal development of scour depth and those for the prediction of the equilibrium scour depth were tested as part of this study. <p>The results of the model study indicated that the maximum depth of scour is highly dependent on the experimental duration. The depth of the scour hole increases as the duration of the increased flow that initiates the scour increases. The extent of scour observed at the pier also increases as the duration of the tests increases. It was found that the temporal development of the scour hole at the pier was dependent on whether or not the pier was fitted with a collar placed at the bed level. The pathway to an equilibrium scour depth is different depending on whether the pier is fitted with a collar or not. With a collar in place, the development of the scour hole is considerably delayed. A truly equilibrium scour condition is not readily attainable and was not achieved in the work reported herein. It was demonstrated that wrong conclusions may be reached if a test is stopped short of an equilibrium state. As regards the temporal development of scour depth and for the tests in which no collar was fitted to the pier, it was noted that the form of equation that fits the experimental data well was the one given by Franzetti et al. (1982). Furthermore, it is possible to reach a variety of conclusions about the efficacy of using collars as a pier scour countermeasure technique, depending on which definition of time to equilibrium scour is adopted.
20

Time development of local scour at a bridge pier fitted with a collar

Alabi, Patrick Dare 23 August 2006 (has links)
A series of relatively recent bridge failures due to pier scour, as reported in literature, has rekindled interest in furthering our understanding of the scour process and for developing improved ways of protecting bridges against scour. Moreover, increased attention is being given to the state of Canadas infrastructure, a major aspect of which is the transportation network. In part, there is concern about both the impact of a failure on the handling of traffic flow while the failure is being remedied and on the cost of replacing the failed system component. As such, attention is being given to the scour design of new bridges and to the inspection, maintenance and management of existing bridge structures. The two major countermeasure techniques employed for preventing or minimising local scour at bridge piers are increased scour resistance and flow alteration. In the former case, the objective is to combat the erosive action of the scour-inducing mechanisms using hard engineering materials or physical barriers such as rock riprap. In the latter case, the objective is to either inhibit the formation of the scour-inducing mechanisms or to cause the scour to be shifted away from the immediate vicinity of the pier. This research focuses on a particular application of the latter technique. <p> In this study, the use of collars for reducing the effects of local scour at a bridge pier is presented together with the time aspect of the scour development. The adoption of a collar is based on the concept that its existence will sufficiently inhibit and/or deflect the local scour mechanisms so as to reduce the local scour immediately adjacent to the pier. The overall objective of the research is to study the temporal development of the scour for a pier fitted with a collar and a pier without a collar. More specifically, the objectives are: i) to evaluate the effectiveness of a pier collar for mitigating the depth of scour that would otherwise occur at a bridge pier; and ii) to assess the occurrence of an equilibrium scour condition, if achieved, or of the implications of not achieving such a condition in respect of interpreting the results obtained from a physical hydraulic model study. <p>The study was conducted using a physical hydraulic model operated under clear-water conditions in cohesionless bed material. Tests were conducted using two different pier diameters so as to determine the effect of pier diameter on the temporal development of scour for a plain pier. Also investigated was the effect of collar size on the time development of scour and its efficacy at preventing scour at a bridge pier. The time development of the scour hole around the model pier with and without a collar installed was compared with similar studies on bridge piers. Several equations for the temporal development of scour depth and those for the prediction of the equilibrium scour depth were tested as part of this study. <p>The results of the model study indicated that the maximum depth of scour is highly dependent on the experimental duration. The depth of the scour hole increases as the duration of the increased flow that initiates the scour increases. The extent of scour observed at the pier also increases as the duration of the tests increases. It was found that the temporal development of the scour hole at the pier was dependent on whether or not the pier was fitted with a collar placed at the bed level. The pathway to an equilibrium scour depth is different depending on whether the pier is fitted with a collar or not. With a collar in place, the development of the scour hole is considerably delayed. A truly equilibrium scour condition is not readily attainable and was not achieved in the work reported herein. It was demonstrated that wrong conclusions may be reached if a test is stopped short of an equilibrium state. As regards the temporal development of scour depth and for the tests in which no collar was fitted to the pier, it was noted that the form of equation that fits the experimental data well was the one given by Franzetti et al. (1982). Furthermore, it is possible to reach a variety of conclusions about the efficacy of using collars as a pier scour countermeasure technique, depending on which definition of time to equilibrium scour is adopted.

Page generated in 0.0434 seconds