• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A new approach to ensure successful implementation and sustainable DSM in RSA mines / Daniël Francois le Roux

Le Roux, Daniël Francois January 2005 (has links)
In this study a new tool was developed that made new approaches possible for the successful implementation of Demand Side Management (DSM) projects. The new approaches are incorporated into a generic tool that makes it possible for Energy Services Companies (ESCos) to undertake DSM projects that were previously not possible with currently available technology. Through these new approaches, maximum results can be obtained on a sustainable basis on the clear water pumping systems of South African mines. The author was responsible and participated in four different investigations and implementations of DSM projects. These were grouped into three case studies. Each of these studies required different new innovations. The innovations described in this thesis include the adaptation of the Real-time Energy Management System (REMS) that was developed and marketed by HVAC International, to mines with intricate pumping systems, mines without any instrumentation and control infrastructure, as well as to mines that make use of a Three Pipe Water Pumping System. The tool developed and applied in these projects was part of Eskom's DSM programme. In this programme, large electricity clients who wish to shift electrical load out of peak periods, are assisted by having the total costs of such projects funded by Eskom. The fact that the clients will most likely enjoy substantial electricity cost savings, (by not having to pay the high peak prices), is a major attraction of this programme. Nevertheless, the programme is not moving as fast as it should. The National Energy Regulator (NER) has set an annual target of 153 MW load to be shifted since 2003. By the end of 2005, the accumulated target load to be shifted will be 459 MW. However, Eskom has indicated that an accumulated total of only 181 MW load will have been shifted by the end of 2005. This means that the Eskom DSM programme has actually only achieved 39% of its target. The innovations described in this thesis will help ESCos to address this shortfall more effectively / Thesis (Ph.D. (Mechanical Engineering))--North-West University, Potchefstroom Campus, 2006
2

A new approach to ensure successful implementation and sustainable DSM in RSA mines / D.F. le Roux

Le Roux, Daniël Francois January 2005 (has links)
Thesis (Ph.D. (Mechanical Engineering))--North-West University, Potchefstroom Campus, 2006.
3

Researching the long-term impact of load management projects on South African mines / N.C.J.M. de Kock

De Kock, Nicolaas Cornelius Jacobus Marthinus January 2006 (has links)
Thesis (M.Ing. (Electrical Engineering))--North-West University, Potchefstroom Campus, 2007.
4

A new approach to ensure successful implementation and sustainable DSM in RSA mines / Daniël Francois le Roux

Le Roux, Daniël Francois January 2005 (has links)
In this study a new tool was developed that made new approaches possible for the successful implementation of Demand Side Management (DSM) projects. The new approaches are incorporated into a generic tool that makes it possible for Energy Services Companies (ESCos) to undertake DSM projects that were previously not possible with currently available technology. Through these new approaches, maximum results can be obtained on a sustainable basis on the clear water pumping systems of South African mines. The author was responsible and participated in four different investigations and implementations of DSM projects. These were grouped into three case studies. Each of these studies required different new innovations. The innovations described in this thesis include the adaptation of the Real-time Energy Management System (REMS) that was developed and marketed by HVAC International, to mines with intricate pumping systems, mines without any instrumentation and control infrastructure, as well as to mines that make use of a Three Pipe Water Pumping System. The tool developed and applied in these projects was part of Eskom's DSM programme. In this programme, large electricity clients who wish to shift electrical load out of peak periods, are assisted by having the total costs of such projects funded by Eskom. The fact that the clients will most likely enjoy substantial electricity cost savings, (by not having to pay the high peak prices), is a major attraction of this programme. Nevertheless, the programme is not moving as fast as it should. The National Energy Regulator (NER) has set an annual target of 153 MW load to be shifted since 2003. By the end of 2005, the accumulated target load to be shifted will be 459 MW. However, Eskom has indicated that an accumulated total of only 181 MW load will have been shifted by the end of 2005. This means that the Eskom DSM programme has actually only achieved 39% of its target. The innovations described in this thesis will help ESCos to address this shortfall more effectively / Thesis (Ph.D. (Mechanical Engineering))--North-West University, Potchefstroom Campus, 2006
5

Researching the long-term impact of load management projects on South African mines / Nicolaas Cornelius Jacobus Marthinus de Kock

De Kock, Nicolaas Cornelius Jacobus Marthinus January 2006 (has links)
Eskom is currently facing an energy crisis due to the limited operational electricity generating capacity in South Africa. The historically low electricity price, the rapid growth in economy and the energy intensive nature of South African industries are the most common reasons for the peak supply problem. Various supply and demand technologies have been identified to address this energy crisis. Due to the lengthy process of building new peaking load power stations, Eskom has initiated the Demand-side Management (DSM) programme as a solution to the short-term supply problem. The National Energy Regulator (NER) has set targets to Eskom DSM to reduce the evening peak demand by 153 MW per annum and 4 255 MW over a 20-year planning horizon. Due to the energy intensive nature of the mining industry, it has been targeted for DSM savings. To date there have been a number of DSM projects implemented on the clear-water pumping systems of various mines, with a large potential for DSM savings identified on future projects still unrealised. The generation benefit of DSM load-shifting projects is twofold; firstly Eskom's evening load capacity increases due to the reduction in demand during these periods and secondly, the mine receives electricity cost savings due to load management practices. Because Eskom DSM is dependent on the client consumer to accept and roll-out the DSM programme, client satisfaction is of paramount importance. Due to the fact that load-shifting efforts require from the mine to change their normal operating schedules, there is uncertainty on the impact and knock-on effects of DSM projects on a mine. Therefore, the purpose of this study is to investigate and thereafter quantify the overall impact of DSM load-shifting on the clear-water pumping system of South African mines. A generic model was developed by performing case studies on existing DSM projects. This model was then applied to future DSM projects to validate the findings made throughout the research study. The case studies performed on existing DSM projects, as well as the results obtained when modelling the overall impact of DSM on future mines, proofs that DSM definitely benefits a mine. The total annual cost saving on the four future DSM projects is predicted to be in the order of R 7.64 million instead of the R 4.27 million when considering only the electricity cost savings to the mine. / Thesis (M.Ing. (Electrical Engineering))--North-West University, Potchefstroom Campus, 2007.
6

Researching the long-term impact of load management projects on South African mines / Nicolaas Cornelius Jacobus Marthinus de Kock

De Kock, Nicolaas Cornelius Jacobus Marthinus January 2006 (has links)
Eskom is currently facing an energy crisis due to the limited operational electricity generating capacity in South Africa. The historically low electricity price, the rapid growth in economy and the energy intensive nature of South African industries are the most common reasons for the peak supply problem. Various supply and demand technologies have been identified to address this energy crisis. Due to the lengthy process of building new peaking load power stations, Eskom has initiated the Demand-side Management (DSM) programme as a solution to the short-term supply problem. The National Energy Regulator (NER) has set targets to Eskom DSM to reduce the evening peak demand by 153 MW per annum and 4 255 MW over a 20-year planning horizon. Due to the energy intensive nature of the mining industry, it has been targeted for DSM savings. To date there have been a number of DSM projects implemented on the clear-water pumping systems of various mines, with a large potential for DSM savings identified on future projects still unrealised. The generation benefit of DSM load-shifting projects is twofold; firstly Eskom's evening load capacity increases due to the reduction in demand during these periods and secondly, the mine receives electricity cost savings due to load management practices. Because Eskom DSM is dependent on the client consumer to accept and roll-out the DSM programme, client satisfaction is of paramount importance. Due to the fact that load-shifting efforts require from the mine to change their normal operating schedules, there is uncertainty on the impact and knock-on effects of DSM projects on a mine. Therefore, the purpose of this study is to investigate and thereafter quantify the overall impact of DSM load-shifting on the clear-water pumping system of South African mines. A generic model was developed by performing case studies on existing DSM projects. This model was then applied to future DSM projects to validate the findings made throughout the research study. The case studies performed on existing DSM projects, as well as the results obtained when modelling the overall impact of DSM on future mines, proofs that DSM definitely benefits a mine. The total annual cost saving on the four future DSM projects is predicted to be in the order of R 7.64 million instead of the R 4.27 million when considering only the electricity cost savings to the mine. / Thesis (M.Ing. (Electrical Engineering))--North-West University, Potchefstroom Campus, 2007.

Page generated in 0.0645 seconds