• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Design, Synthesis and Biological Evaluation of Novel Cannabinoid Antagonist

Verma, Abha 02 August 2012 (has links)
This study was aimed at the development of novel CB1 cannabinoid receptor antago­nists that may have clinical applications for the treatment of cannabinoid and psychostimulant addiction. The rationale for the design for our target was to incorporate a bioisosteric 1,2,3-triazole ring into the vicinal diaryl group revealed in the prototypical antagonist/inverse agonist SR141716 (Rimonabant) that was pre­sumed to interact with a unique region in the CB1 receptors. Based on our prelimi­nary results we identified a novel series of 1,2,3-triazole ester and keto deriva­tives as lead compounds for biological evaluation. Here in the design rationale, syn­thesis and CB1 receptor affinity for a series of 4,5-diaryl-1-substituted-1,2,3-triazoles of ester and ketones is described. These derivatives were synthesized via a one-pot regiospecific click/acylation reaction sequence from 1-azido-2,4-dichlorobenzene and commercially available arylacetylenes. From the structure-activity studies the 5-(4-chlorophenyl) congeners exhibited the most potent CB1 receptor affinities relative to other 5-(substituted-phenyl) moieties. The 1-(2,4-dichlorophenyl)-5-(4-chlorophenyl)-4-propylcarbonyl-1,2,3-triazole (­31a) was found to be the most potent (Ki = 4.6 nM) CB1 receptor ligand of the series and exhibited high CB1 selectivity (CB2/CB1 = 417). The triazole ester 31a was further characterized as a cannabinoid antagonist in locomotor-activity studies by blocking the locomotor-reducing effects of cannabinoid agonist WIN55,212-2. In addition, unlike the prototypical cannabinoid antagonist SR141716A (Rimonabant), the triazole ester 31a did not exhibit increased activity in locomotor activ­ity studies, thus indicating the potential for a neutral antagonist profile.
2

Developing Green One-Step Organic Reactions in the High Speed Ball Mill

Cook, Teresa L. 14 October 2014 (has links)
No description available.

Page generated in 0.0704 seconds