• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Altering the thermal regime of soils below heated buildings in the continuous and discontinuous permafrost zones of Alaska

Perreault, Paul Vincent 27 May 2016 (has links)
<p> This research investigates the impacts of thermal insulation on the thermal regime of soils below heated buildings in seasonally and perennially frozen soils. The research provides practical answers (A) for designing frost-protected shallow foundations in unfrozen soils of the discontinuous permafrost zone in Alaska and (B) shows that applying seasonal thermal insulation can reduce the risk of permafrost thawing under buildings with open crawl spaces, even in warming climatic conditions. </p><p> At seasonal frost sites, this research extends frost-protected shallow foundation applications by providing design suggestions that account for colder Interior Alaska&rsquo;s air freezing indices down to 4,400 &deg;C&dot;d (8,000 &deg;F&dot;d). This research includes field studies at six Fairbanks sites, mathematical analyses, and finite element modeling. An appendix includes frost-protected shallow foundation design recommendations. Pivotal findings include the discovery of more pronounced impacts from horizontal frost heaving forces than are likely in warmer climates. </p><p> At permafrost sites, this research investigates the application of manufactured thermal insulation to buildings with open crawl spaces as a method to preserve soils in the frozen state. This research reports the findings from using insulation to reduce permafrost temperature, and increase the bearing capacity of permafrost soils. Findings include the differing thermal results of applying insulation on the ground surface in an open crawl space either permanently (i.e., left in place), or seasonally (i.e., applied in warm months and removed in cold months). Research includes fieldwork in Fairbanks, and finite element analyses for Fairbanks, Kotzebue, and Barrow. Pivotal findings show that seasonal thermal insulation effectively cools the permafrost. By contrast, Fairbanks, Kotzebue, and Barrow investigations show that permanently applied thermal insulation decreases the active layer, while also increasing (not decreasing) the permafrost temperature. </p><p> Using seasonal thermal insulation, in a controlled manner, satisfactorily alters the thermal regime of soils below heated buildings and provides additional foundation alternatives for arctic buildings.</p>
2

A Framework for the Analysis of Coastal Infrastructure Vulnerability under Global Sea Level Rise

O'Brien, Patrick S. 24 February 2018 (has links)
<p> The assumption of hydrologic stationarity has formed the basis of coastal design to date. At the beginning of the 21<sup>st</sup> century, the impact of climate variability and future climate change on coastal water levels has become apparent through long term tide gauge records, and anecdotal evidence of increased nuisance tidal flooding in coastal areas. Recorded impacts of global sea rise on coastal water levels have been documented over the past 100 to 150 years, and future water levels will continue to change at increasing, unknown rates, resulting in the need to consider the impacts of these changes on past coastal design assumptions. New coastal infrastructure plans, and designs should recognize the paradigm shift in assumptions from hydrologic stationarity to non-stationarity in coastal water levels. As we transition into the new paradigm, there is a significant knowledge gap which must address built coastal infrastructure vulnerability based on the realization that the underlying design assumptions may be invalid. </p><p> A framework for the evaluation of existing coastal infrastructure is proposed to effectively assess vulnerability. The framework, called the Climate Preparedness and Resilience Register (CPRR) provides the technical basis for assessing existing and future performance. The CPRR framework consists of four major elements: (1) datum adjustment, (2) coastal water levels, (3) scenario projections and (4) performance thresholds. The CPRR framework defines methodologies which: (1) adjust for non-stationarity in coastal water levels and correctly make projections under multiple scenarios; (2) account for past and future tidal to geodetic datum adjustments; and (3) evaluate past and future design performance by applying performance models to determine the performance thresholds. The framework results are reproducible and applicable to a wide range of coastal infrastructure types in diverse geographic areas. </p><p> The framework was applied in two case studies of coastal infrastructure on the east and west coasts of the United States. The east coast case study on the Stamford Hurricane Barrier (SHB) at Stamford CT, investigated the navigation gate closures of the SHB project. The framework was successfully applied using two performance models based on function and reliability to determine the future time frame at which relative sea level rise (RSLR) would cause Navigation Gate closures to occur once per week on average or 52 per year. The closure time analysis also showed the impact of closing the gate earlier to manage internal drainage to the Harbor area behind the Stamford Hurricane Barrier. These analyses were made for three future sea level change (SLC) scenarios. </p><p> The west coast case study evaluated four infrastructure elements at the San Francisco Waterfront, one building and three transportation elements. The CPRR framework applied two performance models based on elevation and reliability to assess the vulnerability to flooding under four SLC scenarios. An elevation-based performance model determined a time horizon for flood impacts for king tides, 10 and 100-year annual exceedance events. The reliability-based performance model provided a refinement of results obtained in the elevation-based model due to the addition of uncertainty to the four infrastructure elements. </p><p> The CPRR framework and associated methodologies were successfully applied to assess the vulnerability of two coastal infrastructure types and functions in geographically diverse areas on the east and west coasts of the United States.</p><p>

Page generated in 0.1187 seconds