Spelling suggestions: "subject:"clinical neurophysiological"" "subject:"cilinical neurophysiological""
1 |
Auditory evoked potentials in epilepsyPozo, R. del January 1982 (has links)
No description available.
|
2 |
Celluar and Molecular Mechanisms Underlying Regulation of Skeletal Muscle Contraction in Health and DiseaseLi, Mingxin January 2010 (has links)
Morphological changes, genetic modifications, and cell functional alterations are not always parallel. Therefore, assessment of skeletal muscle function is an integral part of the etiological approach. The general objective of this thesis was to look into the cellular and molecular events occurring in skeletal muscle contraction in healthy and diseased condition, using a single fiber preparation and a single fiber in vitro motility assay, in an attempt to approach the underlying mechanisms from different physiological angles. In a body size related muscle contractility study, scaling of actin filament sliding speed and its temperature sensitivity has been investigated in mammals covering a 5,500-fold difference in body mass. A profound temperature dependence of actin filament sliding speed over myosin head was demonstrated irrespective of MyHC isoform expression and species. However, the expected body size related scaling within orthologus myosin isoforms between species failed to be maintained at any temperature over 5,500-fold range in body mass, with the larger species frequently having faster in vitro motility speeds than the smaller species. This suggest that apart from the MyHC iso-form expression, other factors such as thin filament proteins and myofilament lattice spacing, may contribute to the scaling related regulation of skeletal muscle contractility. A study of a novel R133W β-tropomyosin mutation on regulation of skeletal muscle contraction in the skinned single fiber prepration and single fiber in vitro motility assay suggested that the mutation induced alteration in myosin-actin kinetics causing a reduced number of myosin molecules in the strong actin binding state, resulting in overall muscle weakness in the absence of muscle wasting. A study on a type IIa MyHC isoform missense mutation at the motor protein level demonstrated a significant negative effect on the function of the IIa MyHC isoform while other myosin isoforms had normal function. This provides evidence that the pathogenesis of the MyHC IIa E706K myopathy involves defective function of the mutated myosin as well as alterations in the structural integrity of all muscle irrespective of MyHC isoform expression.
|
3 |
Amyotrophic lateral sclerosis (ALS) associated with superoxide dismutase 1 (SOD1) mutations in British Columbia, Canada : clinical, neurophysiological and neuropathological featuresStewart, Heather G. January 2005 (has links)
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by loss of motor neurons and their supporting cells in the brain, brainstem and spinal cord, resulting in muscle paresis and paralysis including the bulbar (speech, chewing, swallowing) and respiratory muscles. The average age at onset is 55 years, and death due to respiratory failure occurs 2-5 years after symptom onset in ~ 85% of cases. Five to 10% of ALS is familial, and about 20% of familial cases are associated with mutations in the superoxide dismutase 1 (SOD1) gene. To date, 118 SOD1 mutations have been reported worldwide (www alsod.org). All are dominantly inherited, except for the D90A mutation, which is typically recessively inherited. D90A homozygous ALS is associated with long (~14 years) survival, and some atypical symptoms and signs. The reason for this is not known. In contrast, most other SOD1 mutations are associated with average survival, while some are associated with aggressive disease having lower motor neuron predominance and survival less than 12 months. The A4V mutation, which is the most frequently occurring SOD1 mutation in the United States, is an example of the latter. Understanding the pathogenic mechanisms of SOD1 mutants causing widely different disease forms like D90A and A4V is of paramount importance. Overwhelming scientific evidence indicates that mutations in the SOD1 gene are cytotoxic by a “gain of noxious” function, which although not fully understood results in protein aggregation and loss of cell function. This thesis explores different ALS-SOD1 gene mutations in British Columbia (BC), Canada. Two hundred and fifty-three ALS patients were screened for SOD1 mutations, and 12 (4.7%) unrelated patients were found to carry one of 5 different SOD1 mutations: A4V (n=2); G72C (n=1); D76Y (n=1); D90A (n=2); and 113T (n=6). Incomplete penetrance was observed in 3/12 families. Bulbar onset disease was not observed in the SOD1 mutation carriers in this study, but gender distribution was similar to previously reported studies. Age at symptom onset for all patients enrolled, with or without SOD1 mutations, was older than reported in previous studies. On average, patients with SOD1 mutations experience a longer diagnostic delay (22.6 months) compared to patients without mutations (12 months). Two SOD1 patients were originally misdiagnosed including the G72C patient who’s presenting features resembled a proximal myopathy. Neuropathological examination of this patient failed to reveal upper motor neuron disease. The I113T mutation was associated with variable age of onset and survival time, and was found in 2 apparently sporadic cases. The D76Y mutation was also found in an apparently sporadic case. I113T and D76Y are likely influenced by other genetic or environmental factors in some individuals. Two patients were homozygous for the D90A mutation, with clinical features comparable to patients originally described in Scandinavia. Clinical and electrophysiological motor neuron abnormalities were observed in heterozygous relatives of one D90A homozygous patient. The A4V patients were similar to those described in previous studies, although one had significant upper motor neuron disease both clinically and neuropathologically. Clinical neurophysiology is essential in the diagnosis of ALS, and helpful in monitoring disease progression. A number of transcranial magnetic stimulation (TMS) studies may detect early dysfunction of upper motor neurons when imaging techniques lack sensitivity. Peristimulus time histograms (PSTHs), which assess corticospinal function via recording of voluntarily activated single motor units during low intensity TMS of the motor cortex, were used to study 19 ALS patients having 5 different SOD1 mutations (including 8 of the 12 patients identified with SOD1 mutations from BC). Results were compared with idiopathic ALS cases, patients with multiple sclerosis (MS), and healthy controls. Significant differences were found in corticospinal pathophysiology between ALS patients with SOD1 mutations, idiopathic ALS, and MS patients. In addition, different SOD1 mutants were associated with significantly different neurophysiologic abnormalities. D90A homozygous patients show preserved if not exaggerated cortical inhibition and slow central conduction, which may reflect the more benign disease course associated with this mutant. In contrast, A4V patients show cortical hyper-excitability and only slightly delayed central conduction. I113T patients display a spectrum of abnormalities. This suggests mutant specific SOD1 pathology(s) of the corticospinal pathways in ALS.
|
4 |
Task-specific modulation of corticospinal excitability during arm and finger movementsAsmussen, Michael James 28 May 2015 (has links)
The main goal of the dissertation was to determine task-dependent modulation of corticospinal descending output. From this main goal, I conducted three different studies to determine how corticospinal output to muscles of the upper arm and hand changed as a function of the task demands. In study 1, I examined how a somatosensory-motor circuit changes when a muscle needs to be active in a task and found that this circuit may be dependent on the movement phase, type of afferent input, and the task demands. In study 2, I examined how this same somatosensory-motor circuit acts to both allow and prevent muscle activity before movement. I revealed that this somatosensory-motor circuit may function to prevent muscle activity when a muscle is not needed in a task and creates facilitation of corticospinal output when it needs to be active in a task. These effects, however, are dependent on the movement phase and the digit the muscle is controlling. Study 3 determined how corticospinal output is modulated to upper arm muscles when performing movements that required different combinations of segmental interactions to achieve the task successfully. Corticospinal output was increased when inertia and the BBC moment at a joint resisted the intended joint rotation and these effects were dependent on the muscle and movement phase. I propose a model of the connectivity between the primary motor and somatosensory cortices that would increase, modulate, or decrease corticospinal output to a muscle depending on its role in the task. The findings from this work provides information to guide future neural rehabilitative interventions for individuals who have movement disorders arising from altered somatosensory-motor processing such as Cerebellar Ataxia, Developmental Coordination Disorder, Focal Hand Dystonia, Parkinson’s disease, and stroke. / Dissertation / Doctor of Philosophy (PhD) / On a day to day basis, we perform a variety of movements without giving much thought to how complicated it is for our nervous system to perform said movements. There are many different areas of the brain that are responsible for controlling movement. This dissertation focuses on two key areas that are critical for movement performance, namely the primary motor and somatosensory cortices. The primary motor cortex is largely responsible for sending signals to the muscles to control movement, while the primary somatosensory cortex plays a crucial role in receiving and understanding sensory input from our body. The studies in this dissertation describe how these two areas of the brain communicate during finger and arm movements to produce or prevent muscle activity. This work has implications for individuals with disorders that impact their everyday movements.
|
Page generated in 0.0558 seconds