• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Cloud-based design and manufacturing: a network perspective

Wu, Dazhong 12 January 2015 (has links)
The motivation of this research is the need for reducing time and cost associated with maintaining information and communication technology infrastructure for design and manufacturing in digitally networked environments, enhancing design communication and collaboration in distributed and collaborative design processes, and adapting to rapidly changing market demands. The objective of this dissertation is to propose a new design and manufacturing paradigm, namely, Cloud-Based Design and Manufacturing (CBDM), for enhancing collaborative product development in distributed settings. In this dissertation, the following challenges pertaining to CBDM are addressed: the systematic development of a conceptual framework and a holistic vision for CBDM systems; the development of a new approach for visualizing distributed and collaborative design processes, measuring tie strengths in a complex and large design collaboration network, and detecting design communities with common design activities in cloud-based design (CBD) settings from a social network perspective; and the development of a new approach that helps identify potential manufacturing bottlenecks and scale manufacturing capacity in cloud-based manufacturing (CBM) settings from a manufacturing network perspective. The contributions of this dissertation are categorized in three research domains: (1) proposing the first definition, a holistic vision, and an example of application scenario for CBDM, (2) modeling and analyzing information flow in cloud-based design for improving design collaboration, and (3) modeling and analyzing material flow in cloud-based manufacturing for planning manufacturing scalability.
2

Mechanism design for complex systems: bipartite matching of designers and manufacturers, and evolution of air transportation networks

Joseph D. Thekinen (5930327) 20 December 2018 (has links)
<div>A central issue in systems engineering is to design systems where the stakeholders do not behave as expected by the systems designer. Usually, these stakeholders have different and often conflicting objectives. The stakeholders try to maximize their individual objective and the overall system do not function as expected by the systems designers.</div><div><br></div><div><div>We specifically study two such systems- a) cloud-based design and manufacturing system (CBDM) and b) Air Transportation System (ATS). In CBDM, two stakeholders</div><div>with conflicting objectives are designers trying to get their parts printed at the lowest possible price and manufacturers trying to sell their excess resource capacity at maximum prots. In ATS, on one hand, airlines make route selection decision with the goal of maximizing their market share and prots and on the other hand regulatory bodies such as Federal Aviation Administration tries to form policies that increase overall welfare of the people.</div></div><div><br></div><div><div>The objective in this dissertation is to establish a mechanism design based framework: a) for resource allocation in CBDM, and b) to guide the policymakers in channeling the evolution of network topology of ATS.</div></div><div><br></div><div><div>This is the rst attempt in literature to formulate the resource allocation in CBDM as a bipartite matching problem with designers and manufacturers forming two distinct set of agents. We recommend best mechanisms in different CBDM scenarios like totally decentralized scenario, organizational scenario etc. based on how well the properties of the mechanism meet the requirements of that scenario. In addition to analyzing existing mechanisms, CBDM offers challenges that are not addressed in the literature. One such challenge is how often should the matching mechanism be implemented when agents interact over a long period of time. We answer this question through theoretical propositions backed up by simulation studies. We conclude that a matching period equal to the ratio of the number of service providers to the arrival rate of designers is optimal when service rate is high and a matching period equal to</div><div>the ratio of mean printing time to mean service rate is optimal when service rate is low.</div></div><div><br></div><div><div>In ATS, we model the evolution of the network topology as the result of route selection decisions made by airlines under competition. Using data from historic decisions we use discrete games to model the preference parameters of airlines towards explanatory variables such as market demand and operating cost. Different from the existing literature, we use an airport presence based technique to estimate these parameters. This reduces the risk of over-tting and improves prediction accuracy. We conduct a forward simulation to study the effect of altering the explanatory variables on the Nash equilibrium strategies. Regulatory bodies could use these insights while forming policies.</div></div><div><br></div><div><div>The overall contribution in this research is a mechanism design framework to design complex engineered systems such as CBDM and ATS. Specically, in CBDM a matching mechanism based resource allocation framework is established and matching mechanisms are recommended for various CBDM scenarios. Through theoretical and</div><div>simulation studies we propose the frequency at which matching mechanisms should be implemented in CBDM. Though these results are established for CBDM, these</div><div>are general enough to be applied anywhere matching mechanisms are implemented multiple times. In ATS, we propose an airport presence based approach to estimate</div><div>the parameters that quantify the preference of airlines towards explanatory variables.</div></div>

Page generated in 0.1085 seconds