• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Airborne lidar studies of Arctic polar stratospheric clouds.

Poole, Lamont Rozelle. January 1987 (has links)
Airborne lidar measurements of Arctic polar stratospheric clouds (PSCs) in January 1984 and January 1986 are reported. The locales and altitudes of the clouds coincided in both years with very cold ambient temperatures. During the 1984 experiment, PSCs were observed on three flights north of Thule, Greenland; peak backscatter occurred near 20 km (at temperatures below 193 K). A single PSC formation was seen between Iceland and Scotland during the 1986 experiment, with beak backscatter occurring near 22 km (at temperatures from 188-191 K). A sequence of observations in this same area by the SAM II satellite sensor depicts the history of cloud development and dissipation. Enhancements in aerosol backscattering in excess of a factor of 100 were measured during the 1984 experiment at latitudes near the Pole where 50-mb temperatures approached the frost point. Depolarization in the backscattered signal was estimated as 30-40%, similar to that measured in cirrus clouds. Farther south, with 50-mb temperatures several degrees warmer, backscatter enhancement factors ranged from 20-30, and little or no depolarization was observed. Results similar to the latter were found during the 1986 experiment--enhancement factors near 50 (at the 30-mb level, with temperatures 3-5 K above the frost point), and little depolarization. The contrast in observations suggested the existence of distinct cloud growth regimes delineated by temperatures, as proposed in recent articles addressing Antarctic ozone depletion. A theoretical model was developed which interposes a stage of nitric acid trihydrate deposition between the two stages of cloud formation and growth assumed in earlier models (aerosol droplet precursors and ice particles). The calculated temperature dependence of backscatter and extinction agreed well with experimentally observed values, except for small systematic errors at the 30-mb level which may be due to poor characterization of the temperature field there. A companion theoretical study of PSC formation at 70 mb in the Antarctic showed that about 80% and 30% of the nitric acid and water vapor supplies, respectively, may be sequestered in relatively large (4-μm radius) cloud particles at a temperature near 189 K. Such large particles would fall at a rate of about 2 km wk⁻¹, suggesting that PSCs may act as a sink for these stratospheric trace gases.

Page generated in 0.0949 seconds