• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 8
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Functional and Physical Interaction between the Trigger Factor Folding Chaperone and the ClpXP Degradation System

Ologbenla, Adedeji 09 December 2013 (has links)
Molecular chaperones and proteases help maintain protein homeostasis in the cell. While chaperones assist in the folding of polypeptide chains to their native state, proteases degrade misfolded or unfolded proteins and also help regulate protein levels. While mapping chaperone interaction networks, we found that tig (trigger factor chaperone gene), clpP and clpX genes co-localize next to each other on the genome of most examined bacteria. This led us to hypothesize that trigger factor (TF) chaperone and ClpXP protease might interact functionally. TF is a ribosome-associated chaperone that co-translationally folds polypeptide chains. ClpXP is a proteolytic complex that degrades a wide range of substrate proteins. We observed that TF enhanced the rate of the ClpXP degradation of the λO phage protein in vitro and in vivo. TF was also found to enhance the degradation of ribosome-stalled λO thus suggesting the existence of co-translational protein degradation in E. coli.
2

Elucidating the Priming Mechanism of ClpXP Protease by Single-Domain Response Regulator CpdR in Caulobacter crescentus

Barker, Kimberly E 14 November 2023 (has links) (PDF)
In Caulobacter crescentus, progression through the cell cycle is regulated by the AAA+ protease ClpXP, and there are several classes of cell-cycle substrates that require adaptors in order to be degraded. CpdR, a single domain-response regulator, binds the N-terminal domain of ClpXP and primes the protease for degradation of downstream factors (Lau et al., 2015). The ability of CpdR to bind ClpX is regulated by its phosphorylation state. In the unphosphorylated state, CpdR binds ClpXP and guides its localization to the cell pole during the swarmer to stalked transition, where CpdR is mediates degradation of substrates such as PdeA. Phosphorylation of response regulator receiver domains requires magnesium as a cofactor to stabilize the phosphorylated aspartate and reciprocally, phosphorylated receiver domains bind magnesium more effectively. While it is understood that CpdR primers ClpX for substrate degradation, the mechanism by which it does so has remained unclear. Using CollabFold, we identified putative residues involved in CpdR-ClpX binding and validated them using a BACTH screening. In vitro, we characterized the role that magnesium plays in regulating CpdR binding to ClpX. In this work, we directly test the role of magnesium in CpdR priming of ClpXP to show that magnesium may play a regulatory role in CpdR-mediated degradation, and thus binding to ClpX. We identify residues in ClpX that seem to be important for CpdR binding, which prior to this work was not clear.
3

Dopad downregulace exprese genu pro peptidázovou podjednotku ClpP mitochondriální proteázy ClpXP na strukturu a funkci mitochondrií v lidských buňkách / Impact of downregulation of gene expression of the peptidase subunit ClpP of the mitochondrial protease ClpXP on structure and function of mitochondria in human cells

Kolařík, Daniel January 2019 (has links)
Mitochondria are some of the most complex organelles of eukaryotic cell. They have their own genome and transcriptional apparatus and maintain several key cellular functions. A substantial part of cellular energetic metabolism happens in the mitochondria, as well as formation of iron-sulfur complexes, synthesis of several key molecules and they are also the essential organelles for the apoptotic pathway. In order to maintain the quality of proteins in their oxidative environment, mitochondria have developed a complex system of proteases that reaches all the mitochondrial compartments that degrade damaged proteins and thus promote mitochondrial turnover. The aim of this work was to characterise function of ClpP subunit of ClpXP matrix protease, which role was not yet extensively investigated in human cells. Therefore, we used RNA-interference to silence expression of ClpP in HEK 293 cells and then we performed rescue experiment during which we reintroduced ClpP in cells. Our results show that the ClpP subunit does not actively participate in apoptotic pathway, nevertheless it is essential for correct assembly of all the respiratory complexes as well as the quality of mitochondria itself. We have also shown that the system of mitochondrial proteases is highly functional and that a lack of ClpP...
4

ClpXP-regulated Proteins Suppress Requirement for RecA in Dam Mutants of Escherichia coli K-12

Savakis, Amie 25 October 2018 (has links)
Double strand breaks (DSB) are a common source of DNA damage in both prokaryotes and eukaryotes. If they are not repaired or are repaired incorrectly, they can lead to cell death (bacteria) or cancer (humans). In Escherichia coli, repair of DSB are typically accomplished via homologous recombination and mediated by RecA. This repair pathway, among others, is associated with activation of the SOS response. DNA adenine methyltransferase (dam) mutants have an increased number of DSB and, therefore, are notorious for being RecA-dependent for viability. Here, we show that the synthetic lethality of Δdam/ΔrecA is suppressed when clpP is removed, suggesting that there is a protein, normally degraded by ClpXP, which is preventing DSB from occurring.
5

Novel Adaptor-Dependent Domains Promote Processive Degradation by ClpXP

Rood, Keith L 01 January 2011 (has links) (PDF)
Protein degradation by ATP dependent proteases is a universally conserved process. Recognition of substrates by such proteases commonly occurs via direct interaction or with the aid of a regulatory adaptor protein. An example of this regulation is found in Caulobacter crescentus, where key regulatory proteins are proteolysed in a cell-cycle dependent fashion. Substrates include essential transcription factors, structural proteins, and second messenger metabolism components. In this study, we explore sequence and structural requirements for regulated adaptor mediated degradation of PdeA, an important regulator of cyclic-di-GMP levels. Robust degradation of PdeA is dependent on the response regulator CpdR in vivo and in vitro. Here, I structurally identify a novel PAS domain in PdeA that is necessary and sufficient for CpdR mediated PdeA degradation. The PAS domain was found to contain a unique dimerization element that is associated with PdeA function. I show specifically that PdeA engages ClpXP through C-terminal recognition motifs. Finally, we present evidence that PdeA contains cryptic ClpXP recognition sites that are revealed during partial processing. Due to these uncommon degradation characteristics of PdeA, unique proteolytic insights may be gained by investigating this model system.
6

A Chemical Approach to Distinguish ATP-dependent Proteases

Fishovitz, Jennifer January 2011 (has links)
No description available.
7

Synthesis and Application of Boronic Acid Derivatives

Sun, Jing 23 May 2010 (has links)
Boronic acids are attractive synthetic intermediates and have been shown to be effective as inhibitors of various enzymes. In this project, the overarching goal is the selective inhibition of a protease present in the mitochondria known as human ClpXP. To study the potential selective inhibition of Human ClpXP using N-terminal peptidic boronic acid, we have designed a synthetic scheme that includes?-borylation of °,?-unsaturated carbonyl compounds using Cu(I) as catalyst, °-alkylation, saponification/hydrogenation, amidation, and oxidative removal of pinacolyl group with sodium periodate. A simple amidoboronic acid was also synthesized for stability studies. This compound, synthesized in 44% overall yield, could be used as a surrogate for N-terminal peptidic boronic acid to provide basic understanding of the stability of more elaborate N-terminal peptidic boronic acids. During the synthesis of this compound, published deprotection methods were not suitable to deprotect the pinacol group. A two-step protocol for pinacolyl boronic ester deprotection via a diethanolamine protected intermediate was successfully developed with the advantages of mild reaction conditions, tolerance to various functional groups, short reaction time and ease of product isolation. The current results will be useful for the deprotection of other boronic esters, such as pinanediol protected compounds, which are being used extensively in stereoselective synthesis. / Master of Science
8

Intracellular systems for characterization and engineering of proteases and their substrates

Kostallas, George January 2011 (has links)
Over the years, the view on proteases as relatively non-specific protein degradation enzymes, mainly involved in food digestion and intracellular protein turnover, has shifted and they are now recognized as key regulators of many biological processes that determine the fate of a cell. Besides their biological role, proteases have emerged as important tools in various biotechnical, industrial and medical applications. At present, there are worldwide efforts made that aim at deciphering the biological role of proteases and understanding their mechanism of action in greater detail. In addition, with the growing demand of novel protease variants adapted to specific applications, protease engineering is attracting a lot of attention. With the vision of contributing to the field of protein science, we have developed a platform for the identification of site-specific proteolysis, consisting of two intracellular genetic assays; one fluorescence-based (Paper I) and one antibiotic resistance-based (Paper IV). More specifically, the assays take advantage of genetically encoded short-lived reporter substrates that upon cleavage by a coexpressed protease confer either increased whole-cell fluorescence or antibiotic resistance to the cells in proportion to the efficiency with which the substrates are processed. Thus, the fluorescence-based assay is highly suitable for high-throughput analysis of substrate processing efficiency by flow cytometry analysis and cell sorting, while the antibiotic resistance assay can be used to monitor and identify proteolysis through (competitive) growth in selective media. By using the highly sequence specific tobacco etch virus protease (TEVp) as a model in our systems, we could show that both allowed for (i) discrimination among closely related substrate peptides (Paper I & IV) and (ii) enrichment and identification of the best performing substrate-protease combination from a background of suboptimal variants (Paper I & IV). In addition, the fluorescence-based assay was used successfully to determine the substrate specificity of TEVp by flow cytometric screening of large combinatorial substrate libraries (Paper II), and in a separate study also used as one of several methods for the characterization of different TEVp mutants engineered for improved solubility (Paper III). We believe that our assays present a new and promising path forward for high-throughput substrate profiling of proteases, directed evolution of proteases and identification of protease inhibitors, which all are areas of great biological, biotechnical and medical interest. / QC 20110516

Page generated in 0.0285 seconds