• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1329
  • 364
  • 187
  • 126
  • 69
  • 39
  • 37
  • 33
  • 26
  • 25
  • 22
  • 21
  • 19
  • 12
  • 9
  • Tagged with
  • 2676
  • 604
  • 524
  • 422
  • 390
  • 333
  • 283
  • 281
  • 270
  • 242
  • 237
  • 206
  • 204
  • 199
  • 191
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.

Genetic Algorithm Application to Queuing Network and Gene-Clustering Problems

Hourani, Mouin 25 February 2004 (has links)
No description available.

Exploratory Data Analysis using Clusters and Stories

Hossain, Mahmud Shahriar 25 July 2012 (has links)
Exploratory data analysis aims to study datasets through the use of iterative, investigative, and visual analytic algorithms. Due to the difficulty in managing and accessing the growing volume of unstructured data, exploratory analysis of datasets has become harder than ever and an interest to data mining researchers. In this dissertation, we study new algorithms for exploratory analysis of data collections using clusters and stories. Clustering brings together similar entities whereas stories connect dissimilar objects. The former helps organize datasets into regions of interest, and the latter explores latent information by connecting the dots between disjoint instances. This dissertation specifically focuses on five different research aspects to demonstrate the applicability and usefulness of clusters and stories as exploratory data analysis tools. In the area of clustering, we investigate whether clustering algorithms can be automatically "alternatized" and how they can be guided to obtain alternative results using flexible constraints as "scatter-gather" operations. We demonstrate the application of these ideas in many application domains, including studying the bat biosonar system and designing sustainable products. In the area of storytelling, we develop algorithms that can generate stories using distance, clique, and syntactic constraints. We explore the use of storytelling for studying document collections in the biomedical literature and intelligence analysis domain. / Ph. D.

Accurate relative location of similar earthquakes

Logan, Alan Leslie Leonard January 1987 (has links)
No description available.

Large-scale density and velocity fields in the Universe

Lilje, Per Vidar Barth January 1988 (has links)
No description available.

Ion channel activity and signalling in the Fucus rhizoid

Manison, Nicholas Frederick January 1999 (has links)
No description available.

Structural and spectroscopic aspects of water clusters

Buffey, Ian Peter January 1988 (has links)
No description available.

Mathematical modelling of coagulation and gelation

Davies, Susan C. January 1998 (has links)
No description available.

Statistical analysis of large scale structure in the universe

Baugh, Carlton Martin January 1994 (has links)
No description available.

Clustering analysis of residential loads

Karimi, Kambiz January 1900 (has links)
Master of Science / Department of Electrical and Computer Engineering / Anil Pahwa / Understanding electricity consumer behavior at different times of the year and throughout the day is very import for utilities. Though electricity consumers pay a fixed predetermined amount of money for using electric energy, the market wholesale prices vary hourly during the day. This analysis is intended to see overall behavior of consumers in different seasons of the year and compare them with the market wholesale prices. Specifically, coincidence of peaks in the loads with peak of market wholesale price is analyzed. This analysis used data from 101 homes in Austin, TX, which are gathered and stored by Pecan Street Inc. These data were used to first determine the average seasonal load profiles of all houses. Secondly, the houses were categorized into three clusters based on similarities in the load profiles using k-means clustering method. Finally, the average seasonal profiles of each cluster with the wholesale market prices which was taken from Electric Reliability Council of Texas (ERCOT) were compared. The data obtained for the houses were in 15-min intervals so they were first changed to average hourly profiles. All the data were then used to determine average seasonal profiles for each house in each season (winter, spring, summer and fall). We decided to set three levels of clusters). All houses were then categorized into one of these three clusters using k-means clustering. Similarly electricity prices taken from ERCOT, which were also on 15-min basis, were changed to hourly averages and then to seasonal averages. Through clustering analysis we found that a low percent of the consumers did not change their pattern of electricity usage while the majority of the users changed their electricity usage pattern once from one season to another. This change in usage patterns mostly depends on level of income, type of heating and cooling systems used, and other electric appliances used. Comparing the ERCOT prices with the average seasonal electricity profiles of each cluster we found that winter and spring seasons are critical for utilities and the ERCOT price peaks in the morning while the peak loads occur in the evening. In summer and fall, on the other hand, ERCOT price and load demand peak at almost the same time with one or two hour difference. This analysis can help utilities and other authorities make better electricity usage policies so they could shift some of the load from the time of peak to other times.

Parallelisation of EST clustering

Ranchod, Pravesh 23 March 2006 (has links)
Master of Science - Science / The field of bioinformatics has been developing steadily, with computational problems related to biology taking on an increased importance as further advances are sought. The large data sets involved in problems within computational biology have dictated a search for good, fast approximations to computationally complex problems. This research aims to improve a method used to discover and understand genes, which are small subsequences of DNA. A difficulty arises because genes contain parts we know to be functional and other parts we assume are non-functional as there functions have not been determined. Isolating the functional parts requires the use of natural biological processes which perform this separation. However, these processes cannot read long sequences, forcing biologists to break a long sequence into a large number of small sequences, then reading these. This creates the computational difficulty of categorizing the short fragments according to gene membership. Expressed Sequence Tag Clustering is a technique used to facilitate the identification of expressed genes by grouping together similar fragments with the assumption that they belong to the same gene. The aim of this research was to investigate the usefulness of distributed memory parallelisation for the Expressed Sequence Tag Clustering problem. This was investigated empirically, with a distributed system tested for speed against a sequential one. It was found that distributed memory parallelisation can be very effective in this domain. The results showed a super-linear speedup for up to 100 processors, with higher numbers not tested, and likely to produce further speedups. The system was able to cluster 500000 ESTs in 641 minutes using 101 processors.

Page generated in 0.0889 seconds