• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Investigations of cobalt-based oxides as cathode materials for intermediate-temperature solid oxide fuel cells

Li, Yan, doctor of materials science and engineering 20 November 2012 (has links)
Three cobalt-based oxides operating at the Co(III)/Co(II) redox couple have been investigated as potential cathode materials for the intermediate-temperature solid oxide fuel cells (IT-SOFCs). X-ray absorption spectroscopy measurements confirmed that both the oxygen-deficient perovskite Sr[subscript 0.7]Y[subscript 0.3]CoO[subscript 2.65-delta] (SYCO) and the double-perovskite Ba₂[Co][Bi[subscript x]Sc[subscript 0.2]Co[subscript 1.8-x]][subscript O6-delta] (x = 0.1 and 0.2) (BBSC) contain high-spin Co(III) in the bulk at room temperature and thus avoid the thermally driven spin-state crossover of the Co(III) ions usually observed in other cobalt-containing perovskite oxides. Electrochemical characterizations demonstrated that both cobalt oxides operating on the Co(III)/Co(II) redox couple are equally catalytically active for the oxygen reduction reaction as those operating on the Co(IV)/Co(III) redox couple. With an LSGM electrolyte-supported single test cell and NiO+GDC as anode, the maximum power densities Pmax at 800 ºC reach 927 and 1180 mW·cm⁻² for SYCO and BBSC cathodes, respectively. The oxygen-deficient perovskites Sr[subscript 1-x]R[subscript x]CoO[subscript 3-delta] (R = Eu-Ho, Y, x [approximately equal] 0.3) are identified as a new class of cathode materials for IT-SOFCs in this dissertation. On the other hand, the layered Ba2Co9O14 (BCO) containing the low-spin Co(III) at room temperature undergoes a thermally driven spin-state crossover, which has prevented it from being evaluated as the cathode of IT-SOFCs. This problem was overcome by fabrication of a 50-50 wt.% BCO + SDC (Sm[subscript 0.2]Ce[subscript 0.8]O[subscript 1.9]) composite cathode. The addition of SDC not only improved the adhesion to the electrolyte, but also enhanced the electrocatalytic activity for the oxygen reduction reaction. The composite cathode delivers a nearly stable P[subscript max] of ~450 mW·cm-2 at 800 °C in an LSGM electrolyte-supported single test cell. In addition, the electrochemical lithium intercalation process in the monoclinic Nb12O29 was studied with a Li/Nb₁₂O₂₉ half-cell, and the results showed that it can reversibly incorporate a relatively large amount of Li-ions in the voltage window of 2.5-1.0 V at a slow discharge/charge rate while retaining structural integrity. Compared with that of the bare Nb₁₂O₂₉, samples with carbon coating show an improved rate capability. The lithium insertion mechanism into Nb₁₂O₂₉ has also been discussed in terms of sites available to the lithium ions / text

Page generated in 0.0583 seconds