• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Desenvolvimento do nanocompósito Y-TZP/MWCNT-COOH para uso odontológico. / Y-TZP/MWCNT-COOH nanocomposite development for dentistry application

Silva, Lucas Hian da 07 April 2015 (has links)
Este estudo teve como objetivo principal desenvolver uma técnica para síntese de um nanocompósito de Y-TZP/MWCNT-COOH (Zircônia estabilizada por 3 mol% de ítria reforçada por nanotubos de carbono funcionalizado em -COOH) com propriedades mecânicas e ópticas que permitam a sua futura utilização como infraestrutura de próteses fixas dentárias e pilares protéticos para implantes. Assim, foram avaliados a microestrutura, resistência à flexão, tenacidade à fratura, limite de fadiga e propriedades ópticas do nanocompósito e comparada àquelas medidas para Y-TZP convencional (controle). O material Y-TZP/MWCNT-COOH foi desenvolvido pelo processo de co-precipitação de hidróxidos mistos associado ao tratamento hidrotérmico/solvotérmico e prensagem uniaxial em formato de blocos para sistemas CAD/CAM. O pó de MWCNT-COOH foi caracterizado por meio de MEV-FEG, TEM, TGA, DRX e FRX previamente a sua utilização para desenvolvimento do nanocompósito. Espécimes foram obtidos a partir do material Y-TZP/MWCNT-COOH para caracterização por meio de DRX, MEV-FEG e TEM, e comparação de suas propriedades estruturais (densidade e contração), ópticas, resistência à flexão, tenacidade à fratura e limite de fadiga com a Y-TZP convencional. O MWCNT-COOH apresentou-se em feixes de nanotubos de carbono recobertos por sílica tendo comprimento médio de 5,10 ± 1,34 ?m, com 90% dos comprimentos medidos (D90) estando abaixo de 6,9 ?m. Foi verificado a não possibilidade da utilização de líquidos orgânicos em nenhum passo da fabricação dos compósito Y-TZP/MWCNT-COOH por levar ao escurecimento do compósito, inviabilizando sua futura aplicação clínica. O tratamento hidrotérmico sem uso de líquidos orgânicos mostrou-se eficaz em proporcionar o revestimento do nanotubo de carbono por partículas de óxido de zircônio e ítrio. Entretanto, ocasionou a formação de aglomerados e partículas de Y-TZP com tamanho maiores que 5 ?m. Uma densidade relativa de 97,4% foi alcançada para o compósito experimental de Y-TZP contendo MWCNT-COOH, tendo uma razão de contraste de 0.9929 ± 0.0012 e um valor de diferença de cor da Y-TZP convencional de 6,1 ± 3,1 ( ?E). As propriedades mecânicas da Y-TZP/MWCNT-COOH, dureza Vickers (10,14 ± 1,27 GPa; p=0,25) e tenacidade à fratura (4,98 ± 0,30 MPa.m1/2; p=0,39), não apresentaram diferença significativa da Y-TZP convencional (dureza: 8,87 ± 0,89; tenacidade à fratura: 4,98 ± 0,30 MPa.m1/2). Entretanto, para a resistência à flexão (p=0,003) e limite de fadiga cíclica (LFC) foram obtidos valores inferiores para o material experimental Y-TZP/MWCNT-COOH (resistência à flexão: 299,4 ± 30,5 MPa; LFC: 179,4 ± 22,5 MPa) quando comparado à Y-TZP controle (resistência à flexão: 623,7 ± 108,8 MPa; LFC: 439,0 ± 56,4 MPa). Com base nos resultados apresentados, é possível concluir que a síntese de um nanocompósito de Y-TZP/MWCNT-COOH com propriedades ópticas adequadas para aplicação na odontologia restauradora foi possível por meio dos métodos descritos, entretanto algumas adequações nos métodos de síntese e processamento para criação do nanocompósito devem ser realizadas para se evitar a acentuada diminuição de importantes propriedades mecânicas do material. / This study aim was to develop a technique for synthetize nanocomposite of Y-TZP/MWCNT-COOH (3 mol% Yttria-Stabilized Tetragonal Zirconia reinforced with COOH functionalized carbon nanotubes) with mechanical and optical properties that allow their future use as fixed dental prosthesis infrastructure and implant abutments. Thus, the following properties of the nanocomposite were investigated and compared to those measured for conventional Y-TZP (control): microstructure, flexural strength, fracture toughness, fatigue limit and optical properties. Y-TZP/MWCNT-COOH material was developed by the co-precipitation of mixed hydroxides associated with the hydrothermal/solvothermal treatment and uniaxial pressing to form blocks for CAD/CAM systems. The MWCNT-COOH powder was characterized by SEM-FEG, TEM, TGA, XRD and XRF prior to its use for the development of nanocomposite. Specimens were obtained from the Y-TZP/MWCNT-COOH material and characterized by XRD, SEM-FEG and TEM. After characterization, the material had their structural properties (density and contraction), optical, flexural strength, fracture toughness and fatigue limit compared to a conventional Y-TZP. The MWCNT-COOH material was observed to be a bundle formation of carbon nanotube covered with silica with an average length of 5.10 ± 1.34 ?m, with 90% of the measured lengths (D90) being below 6.9 ?m. It has been found to be not possible to use organic liquids on any step of the Y-TZP/MWCNT-COOH manufacturing process due to darkening of the composite, making it unfeasible to future clinical application. The hydrothermal treatment without the use of organic liquids was effective in providing the carbon nanotube coating by zirconium and yttrium oxide particles. However, this treatment led to the formation of agglomerates and particles of Y-TZP with larger than 5 ?m. A relative density of 97.4% was achieved for the Y-TZP/MWCNT-COOH composite, having a contrast ratio of 0.9929 ± 0.0012, and a color difference value from the conventional Y-TZP of 6.1 ± 3.1 (?E). The mechanical properties of Y-TZP/MWCNT-COOH, Vickers hardness (10.14 ± 1.27 GPa; p = 0.25) and fracture toughness (4.98 ± 0.30 MPa.m1/2; p = 0.39), showed no significant difference from the conventional Y-TZP (hardness: 8.87 ± 0.89; fracture toughness: 4.98 ± 0.30 MPa.m1/2). However, flexural strength (p = 0.003) and cyclic fatigue limit (CFL) showed lower values for the experimental material Y-TZP/MWCNT-COOH (flexural strength: 299.4 ± 30.5 MPa; CFL: 179.4 ± 22.5 MPa) compared to Y-TZP control (flexural strength: 623.7 ± 108.8 MPa; CFL: 439.0 ± 56.4 MPa). Based on the results presented, it could be conclude that the synthesis of a nanocomposite of Y-TZP/MWCNT-COOH with optical properties suitable for application in restorative dentistry was made possible by the described methods, however some adjustments in synthesis and processing methods for the nanocomposite creation should be taken; to avoid the sharp decrease of important mechanical properties of the material.
2

Desenvolvimento do nanocompósito Y-TZP/MWCNT-COOH para uso odontológico. / Y-TZP/MWCNT-COOH nanocomposite development for dentistry application

Lucas Hian da Silva 07 April 2015 (has links)
Este estudo teve como objetivo principal desenvolver uma técnica para síntese de um nanocompósito de Y-TZP/MWCNT-COOH (Zircônia estabilizada por 3 mol% de ítria reforçada por nanotubos de carbono funcionalizado em -COOH) com propriedades mecânicas e ópticas que permitam a sua futura utilização como infraestrutura de próteses fixas dentárias e pilares protéticos para implantes. Assim, foram avaliados a microestrutura, resistência à flexão, tenacidade à fratura, limite de fadiga e propriedades ópticas do nanocompósito e comparada àquelas medidas para Y-TZP convencional (controle). O material Y-TZP/MWCNT-COOH foi desenvolvido pelo processo de co-precipitação de hidróxidos mistos associado ao tratamento hidrotérmico/solvotérmico e prensagem uniaxial em formato de blocos para sistemas CAD/CAM. O pó de MWCNT-COOH foi caracterizado por meio de MEV-FEG, TEM, TGA, DRX e FRX previamente a sua utilização para desenvolvimento do nanocompósito. Espécimes foram obtidos a partir do material Y-TZP/MWCNT-COOH para caracterização por meio de DRX, MEV-FEG e TEM, e comparação de suas propriedades estruturais (densidade e contração), ópticas, resistência à flexão, tenacidade à fratura e limite de fadiga com a Y-TZP convencional. O MWCNT-COOH apresentou-se em feixes de nanotubos de carbono recobertos por sílica tendo comprimento médio de 5,10 ± 1,34 ?m, com 90% dos comprimentos medidos (D90) estando abaixo de 6,9 ?m. Foi verificado a não possibilidade da utilização de líquidos orgânicos em nenhum passo da fabricação dos compósito Y-TZP/MWCNT-COOH por levar ao escurecimento do compósito, inviabilizando sua futura aplicação clínica. O tratamento hidrotérmico sem uso de líquidos orgânicos mostrou-se eficaz em proporcionar o revestimento do nanotubo de carbono por partículas de óxido de zircônio e ítrio. Entretanto, ocasionou a formação de aglomerados e partículas de Y-TZP com tamanho maiores que 5 ?m. Uma densidade relativa de 97,4% foi alcançada para o compósito experimental de Y-TZP contendo MWCNT-COOH, tendo uma razão de contraste de 0.9929 ± 0.0012 e um valor de diferença de cor da Y-TZP convencional de 6,1 ± 3,1 ( ?E). As propriedades mecânicas da Y-TZP/MWCNT-COOH, dureza Vickers (10,14 ± 1,27 GPa; p=0,25) e tenacidade à fratura (4,98 ± 0,30 MPa.m1/2; p=0,39), não apresentaram diferença significativa da Y-TZP convencional (dureza: 8,87 ± 0,89; tenacidade à fratura: 4,98 ± 0,30 MPa.m1/2). Entretanto, para a resistência à flexão (p=0,003) e limite de fadiga cíclica (LFC) foram obtidos valores inferiores para o material experimental Y-TZP/MWCNT-COOH (resistência à flexão: 299,4 ± 30,5 MPa; LFC: 179,4 ± 22,5 MPa) quando comparado à Y-TZP controle (resistência à flexão: 623,7 ± 108,8 MPa; LFC: 439,0 ± 56,4 MPa). Com base nos resultados apresentados, é possível concluir que a síntese de um nanocompósito de Y-TZP/MWCNT-COOH com propriedades ópticas adequadas para aplicação na odontologia restauradora foi possível por meio dos métodos descritos, entretanto algumas adequações nos métodos de síntese e processamento para criação do nanocompósito devem ser realizadas para se evitar a acentuada diminuição de importantes propriedades mecânicas do material. / This study aim was to develop a technique for synthetize nanocomposite of Y-TZP/MWCNT-COOH (3 mol% Yttria-Stabilized Tetragonal Zirconia reinforced with COOH functionalized carbon nanotubes) with mechanical and optical properties that allow their future use as fixed dental prosthesis infrastructure and implant abutments. Thus, the following properties of the nanocomposite were investigated and compared to those measured for conventional Y-TZP (control): microstructure, flexural strength, fracture toughness, fatigue limit and optical properties. Y-TZP/MWCNT-COOH material was developed by the co-precipitation of mixed hydroxides associated with the hydrothermal/solvothermal treatment and uniaxial pressing to form blocks for CAD/CAM systems. The MWCNT-COOH powder was characterized by SEM-FEG, TEM, TGA, XRD and XRF prior to its use for the development of nanocomposite. Specimens were obtained from the Y-TZP/MWCNT-COOH material and characterized by XRD, SEM-FEG and TEM. After characterization, the material had their structural properties (density and contraction), optical, flexural strength, fracture toughness and fatigue limit compared to a conventional Y-TZP. The MWCNT-COOH material was observed to be a bundle formation of carbon nanotube covered with silica with an average length of 5.10 ± 1.34 ?m, with 90% of the measured lengths (D90) being below 6.9 ?m. It has been found to be not possible to use organic liquids on any step of the Y-TZP/MWCNT-COOH manufacturing process due to darkening of the composite, making it unfeasible to future clinical application. The hydrothermal treatment without the use of organic liquids was effective in providing the carbon nanotube coating by zirconium and yttrium oxide particles. However, this treatment led to the formation of agglomerates and particles of Y-TZP with larger than 5 ?m. A relative density of 97.4% was achieved for the Y-TZP/MWCNT-COOH composite, having a contrast ratio of 0.9929 ± 0.0012, and a color difference value from the conventional Y-TZP of 6.1 ± 3.1 (?E). The mechanical properties of Y-TZP/MWCNT-COOH, Vickers hardness (10.14 ± 1.27 GPa; p = 0.25) and fracture toughness (4.98 ± 0.30 MPa.m1/2; p = 0.39), showed no significant difference from the conventional Y-TZP (hardness: 8.87 ± 0.89; fracture toughness: 4.98 ± 0.30 MPa.m1/2). However, flexural strength (p = 0.003) and cyclic fatigue limit (CFL) showed lower values for the experimental material Y-TZP/MWCNT-COOH (flexural strength: 299.4 ± 30.5 MPa; CFL: 179.4 ± 22.5 MPa) compared to Y-TZP control (flexural strength: 623.7 ± 108.8 MPa; CFL: 439.0 ± 56.4 MPa). Based on the results presented, it could be conclude that the synthesis of a nanocomposite of Y-TZP/MWCNT-COOH with optical properties suitable for application in restorative dentistry was made possible by the described methods, however some adjustments in synthesis and processing methods for the nanocomposite creation should be taken; to avoid the sharp decrease of important mechanical properties of the material.

Page generated in 0.1037 seconds