• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 53
  • 4
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 87
  • 87
  • 29
  • 22
  • 16
  • 16
  • 13
  • 10
  • 9
  • 9
  • 9
  • 8
  • 8
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

The environmental impact and sustainability of irrigation with coal-mine water

Beletse, Yacob Ghebretinsae 24 May 2009 (has links)
The environmental impact and sustainability of irrigation with coal-mine water was investigated from an agricultural point of view on different coal-mines in the Republic of South Africa. Field trials were carried out on a commercial and plot scale, on sites that could offer a range of soil, crop, weather conditions and water qualities such as gypsiferous, sodium sulphate and sodium bicarbonate waters. Crop production under irrigation with gypsiferous mine water is feasible on a field scale and sustainable if properly managed. No symptoms of foliar injury due to centre pivot sprinkler irrigation with gypsiferous water were observed. The presence of high Ca and Mg in the water suppressed plant uptake of K. This could be corrected by regular application of K containing fertilizers. The bigger problem experienced was waterlogging due to poor site selection, especially during the summer months. The problem is not related to the chemistry of the gypsiferous water used for irrigation. Pasture production with Na2SO4 rich mine effluent was also feasible, at least in the short term, but would need a well-drained profile and large leaching fraction to prevent salt build up. Forage quality was not affected by the Na2SO4 water used. NaHCO3 water was of very poor quality for irrigation and is not recommended for irrigation. Salt tolerant crops that are not susceptible to leaf scorching can be produced with this water, but only with very high leaching fractions and careful crop management. Regular gypsum application will be required to prevent structural collapse of the soil. Most of the salts applied will leach from the soil profile, and will probably need to be intercepted for treatment or reuse. The Soil Water Balance (SWB) model was validated successfully. The model predicted crop growth, soil water deficit to field capacity and soil chemistry reasonably well, with simulated results quite close to measured values. Soluble salts have to be leached from the soil profile, so that crop production can be sustainable, but will externalize the problem to the receiving water environment. To assess the environmental impact of irrigation with coal-mine water, it is valuable to develop a tool that can assist with prediction of offsite effects. SWB was validated for runoff quantity and quality estimations, and was found to give reasonable estimates of runoff quantity and quality. SWB also predicted the soil water and salt balance reasonably well. This gives one confidence in the ability of the model to simulate the soil water and salt balance for long-term scenarios and link the output of SWB to ground and surface water models to predict the wider impact of large scale irrigation. This will also link the findings of this work to other research oriented towards the management of mine water and salt balances on a catchment scale. It will also help authorities make informed decisions about the desirability and consequences of permitting mine water irrigation on a large scale. Irrigation with gypsiferous mine water can be part of finding the solution to surplus mine water problems. Appropriate irrigation management of mine water is essential for the long-term sustainability of irrigation. / Thesis (PhD)--University of Pretoria, 2009. / Plant Production and Soil Science / unrestricted
62

Mineralogical and Geochemical Study of Acid Mine Drainage from 100 Years of Coal Mining in Svalbard (78° N)

Rehn, Andreas January 2020 (has links)
Waste rock piles from coal mining of tertiary bituminous coal in Longyearbyen, Svalbard, show sulfide oxidation and subsequent acid mine drainage (AMD) production. The aim was to establish deeper understanding of AMD prediction based on Mineralogy and Geochemistry of coal and AMD samples. Mineralogical investigation of both coal and rock samples was performed with Automated SEM (ZEISS-Sigma VP300-Mineralogic System) as well as RAMAN. ICP-MS analysis was performed on solid and water samples. The pH from in situ measurements of AMD between 2,5-7,0. Eh varied from 222-569 mV (corresponding pe value of 3,7-9,6). This study showed that time of AMD in an oxidative environment was a key factor in iron concentration and iron speciation the AMD. This could not however be concluded in terms of age of mine site but rather the site-specific setting. The main minerals found in coal samples were pyrite (FeS2), siderite (FeCO3), calcite (CaCO3) and apatite (Ca5(PO4)3). Pyrites were identified with framboidal and euhedral textures and were found inside the maceral matter and in over- and underlying rocks respectively. SEM analysis of coal samples indicated that the modes of mineral formation was changing over the course of the Longyear seam. This study found that framboidal or euhedral textures of pyrite had different impacts in the AMD production. Framboidal pyrite was found to generate a greater amount of acidity than euhedral pyrites due to larger specific surface area and could therefore pose larger problems in AMD management.
63

Evaluating Rare Earth Element Distribution in Reclaimed Appalachian Abandoned Mine Lands

O'Neil-Hankle, Brianna Mariam 22 December 2022 (has links)
No description available.
64

Untersuchung der Entwicklungsmöglichkeiten alternativer Wirtschaftstätigkeiten infolge der Bergbaurestrukturierung im Schiltal

Munteanu, Rares 13 April 2010 (has links) (PDF)
Die Arbeit fängt mit einer Beschreibung des Zustands der Kohlenbergbauindustrie weltweit und des zukünftigen Bedarfes für Kohle an. Danach folgt eine allgemeine Beschreibung des Restrukturierungsprozesses des Kohlenbergbaus in Rumänien und eine vertiefende Untersuchung der Situation im Schiltal infolge des Umstrukturierungsprozesses. Die schwierige sozioökonomische Lage im Schiltal braucht konkrete Lösungen; das Potenzial der Region bietet die Möglichkeit für zukünftige Entwicklungen. Eine vollständige, umfangreiche Analyse und ein Entwicklungskonzept wurden durchgeführt bzw. entwickelt. Es werden sowohl die Entwicklung von alternativen Wirtschaftstätigkeiten, als auch die Modernisierung und Rentabilisierung des traditionellen Bergbaus begründet.
65

The quality of water entering Loskop Dam, Mpumalanga, South Africa.

Moyo, Stanley. January 2013 (has links)
D. Tech. Chemistry / The increase in industrialisation in South Africa has led to an increase in coal mining and coal utilisation in Mpumalanga. This has resulted in the deterioration in the quality of water upstream of Loskop Dam. Little or no information is available on the occurrence or fractionation of trace metals in sediments, which are reservoirs for pollutants. Furthermore, no information is available concerning the occurrence of polycyclic aromatic hydrocarbons (PAHs), known for their carcinogenic and mutagenic effects, in rivers in the area. The possible impact of leaching of elements and organic compounds from South African coals has not been exhaustively researched. The general objectives of the study were to: 1) assess the impact of potentially toxic metals and organic compounds leaching from coal, on the quality of surface waters via simulated leaching experiments; 2) determine the extent of pollution by trace metals and polycyclic aromatic hydrocarbons of the Olifants, Klein Olifants and Wilge rivers, at selected points in the upper catchment area; and 3) identify and apportion sources of polycyclic aromatic hydrocarbons in the sediment samples from the study area.
66

Characterization of Drainage Chemistry in Fanny Creek Catchment and Optimal Passive AMD Treatment Options for Fanny Creek

Mackenzie, Andrew Ian January 2010 (has links)
Fanny Creek drains from Island Block opencast coal mine, near Reefton on the West Coast of the South Island of New Zealand, and is impacted by acid mine drainage (AMD). The objectives of this study were to characterise drainage chemistry in Fanny Creek catchment, and to determine optimal passive treatment strategies for Fanny Creek AMD for future pilot or full-scale application. This was undertaken by monthly monitoring in Fanny Creek catchment between February 2008 and January 2009 to collect drainage chemistry and flow data. Laboratory trials of suitable passive AMD treatment systems were conducted and their treatment performance assessed to select and design optimal passive treatment strategies for Fanny Creek AMD. Oxidation of pyrite in Brunner Coal Measure sediments at Island Block mine generates AMD. Fanny Creek originates from a number of AMD seeps on the eastern waste rock slope of Island Block mine. Seeps have low pH (<3.23) and a single detailed metal analysis indicates drainage is enriched with aluminium and iron, and contains elevated concentrations of manganese, copper, nickel, zinc and cadmium relative to applicable water quality criteria such as ANZECC guidelines. Acidity and metal loadings of drainage in the catchment indicates AMD from the northern waste rock slope contributes most of the acidity (~70%) and metal (60%) in Fanny Creek, and acts to re-dissolve additional metals upon mixing with drainage from other slopes. The most suitable location for a passive AMD treatment system in Fanny Creek catchment is on the Waitahu Valley floor, near monitoring site R12, because this allows for sediment removal prior to a treatment system. Fanny Creek AMD at site R12 was characterized in detail because this data assists with selection and design of passive AMD treatment systems. Fanny Creek at site R12 contains on average 6.0 mg/L aluminium, 1.3 mg/L iron, 3.1 mg/L manganese, 0.49 mg/L zinc, 0.14 mg/L nickel, 0.0071 mg/L copper and 0.00048 mg/L cadmium. Average pH at site R12 was 3.95, calculated acidity averaged 42.7 mg CaCO₃/L, and flow rate ranged from 1.5 L/s to about 30 L/s. Acidity and metal generation from Island Block mine increases linearly with flow in the catchment, and therefore Fanny Creek drainage chemistry is not significantly affected by rainfall dilution. Natural attenuation of AMD occurs by addition of un-impacted alkaline drainage from Greenland Group basement rocks, wetland ecosystem processes, and geochemical reactions along Fanny Creek that decrease acidity and metal concentrations before AMD discharges into the Waitahu River. During low flow conditions (summer months), surface flow of AMD into the Waitahu River does not occur because of subsurface flow loss. Three suitable passive AMD treatment options for Fanny Creek AMD were selected and trialed at ‘bench top’ scale in a laboratory. These included a sulfate reducing bioreactor (SRBR), a limestone leaching bed (LLB), and an open limestone channel (OLC). The potential to mix Waitahu River water with Fanny Creek to neutralize AMD was also investigated. Fanny Creek AMD was employed for laboratory trials, and influent flow rates into SRBR, LLB and OLC systems were regulated to assess performance at different hydraulic retention times (HRT). Optimal HRTs for future treatment system designs were determined from effective AMD treatment thresholds, and include 51 hours, 5 hours and 15 hours for SRBR, LLB and OLC systems, respectively. To determine optimal treatment options for Fanny Creek AMD the effectiveness of each trial option was compared to applicable water quality criteria, and scale up implications of treatment options was assessed. The SRBR system had most effective AMD treatment, with water quality criteria achieved for metals, greatest alkalinity generation, and highest pH increase. However, a full scale SRBR system has significant size requirements, and long term treatment performance may be limited. The LLB system decreased metals to below, or just slightly above criteria for all metals, and has significantly smaller size requirements compared to a SRBR system. The OLC system was least effective, with effluent above water quality criteria for all metals except iron, and with lowest alkalinity generation. The Waitahu River is capable of neutralizing AMD because it is slightly alkaline. The flow volume of river water required for neutralization is between 65 L/s and 140L/s, which can be gravity fed to mix with Fanny Creek. These results indicate that either a LLB treatment system or the Waitahu River Mixing option are the optimal passive treatment strategies for Fanny Creek AMD. On site pilot scale testing of SRBR and LLB systems, and the Waitahu River Mixing option is recommended because of AMD treatment uncertainty, and to more accurately select and design full scale passive treatment strategies.
67

Revegetation of coal spoils in Minto, N.B.: edaphic and ground cover responses to three management regimes

Pigot, Margaret. January 1984 (has links)
No description available.
68

Unsafe Working Conditions: Employee Rights Under LMRA and OSHA

Ashford, Nicholas, Katz, J.I. January 1977 (has links)
No description available.
69

Co-disposal of waste rock and lignite fly ash to mitigate the environmental impact of coal mining

Qureshi, Asif January 2016 (has links)
Waste rocks (WRs) from coal mining and fly ash (FA) from coal combustion were studied to determine the potential of the WRs to generate AMD, FAs to neutralise it and estimate their impacts on environment. The ultimate goal was to develop a methodology based on co-disposal to mitigate the environmental problems associated to both wastes. Two methods for co-disposal were tested: i) Mixing WRs and FAs and ii) covering WRs with FAs. WRs were sampled from the Lakhra coal mines in Pakistan (PK), which has an estimated coal reserves of 1.3 Btonne, varying from lignite to sub-bituminous quality. The FA was sampled from a power plant utilising coal from Lakhra coal mines and is situated in close vicinity (15km) of the mine site. For comparative purposes a bituminous FA from Finland (FI) and biomass FA from Sweden (SE) were also characterised. The WRs and FA samples were characterised by mineralogical and geochemical methods. Besides organic material (coal traces), quartz, pyrite, kaolinite, hematite, gypsum and traces of calcite, lime, malladerite, spangolite, franklinite and birnessite were identified in WRs by XRD. The major elements Si, Al, Ca and Fe were in the range (wt. %) of 8 – 12, 6 – 9, 0.3 – 3 and 1 – 10, respectively, with high S concentrations (1.94 – 11.33 wt. %) in WRs. The AMD potential of WRs ranged from -70 to -492 kg CaCO3 tonne-1. All FAs contained quartz, with iron oxide, anhydrite and magnesioferrite in PK, mullite and lime in FI and calcite and anorthite in SE. The Ca content in SE was 6 and 8 times higher compared to PK and FI, respectively. FAs were enriched in As, Cd, Co, Cr, Cu, Hg, Ni, Pb and Zn compared to continental crust. The acid neutralising potential of PK was equivalent to 20 kg CaCO3 tonne-1 compared to 275 kg CaCO3 tonne-1 (SE) and 25 kg CaCO3 tonne-1 (FI). During the period of 192 days in weathering cell experiments (WCE), the pH of leachates from most acidic WRs was maintained from 1 to 2.5, whereas, the less acidic WRs produced leachates of mildly acidic (2.7) to neutral (7.3) pH. The leachates from very acidic WRs ranged in the concentrations of Fe, SO24− and Al from mg L-1 to g L-1. The samples were subjected to column leaching experiments (CLE) in which mixture (FA:WR; 1:3) and cover (FA:WR; 1:5) cases were mimicked (with 10mm particle size) and effects of particle size (2, 5 and 10mm) on element leaching were studied. Despite having the lowest acid-neutralisation potential compared to FI and SE, co-disposal of PKFA as mixture readily provides acid buffering minerals, resulting in better start-up pH conditions and leachate quality. However, acidity produced by secondary mineralisation contributes towards the acidification of the system, causing stabilisation of pH at around 4.5−5. Secondary mineralisation (especially Fe- and Al-mineral precipitation) also removes toxic elements such as As, Pb, Cu, Zn, Cd, Co, Ni and Mn, and these secondary minerals can also buffer acidity when the pH tends to be acidic. In contrast, the pH of the leachates from the PKFA cover scenario gradually increased from strongly acidic to mildly acidic and circumneutral along with decrease in EC and elemental leaching in different WRs. Gradually increasing pH can be attributed to the cover effect, which reduces oxygen ingress, thus sulphide oxidation, causing pH to elevate. Due to the fact that pH~4–5 is sufficient for secondary Fe- and Al-mineral precipitation which also removes toxic elements (such as Cd, Co, Cu, Zn and Ni) by adsorption and/or co-precipitation, the FA cover performs well enough to achieve that pH until the conclusion of the CLE. However, due to the slower reactivity of the buffering system (additional to the initial flush-out), leaching in the beginning could not be restricted. The co-disposal of FA as cover and/or mixture possesses potential for neutralisation of AMD and improving leachate quality significantly. Particle size of the WRs affected the leaching of the sulphide related elements (such as Fe, S, Zn, Co, Cr, Cu, Mn and Ni) in CLE and WCE. Experiments with ≤1mm particle size constantly produced acidic and metal laden leachates. Co-disposal of FA and WRs as cover and mixture need to be investigated on pilot-scales before full-scale application.
70

Untersuchung der Entwicklungsmöglichkeiten alternativer Wirtschaftstätigkeiten infolge der Bergbaurestrukturierung im Schiltal

Munteanu, Rares 13 June 2008 (has links)
Die Arbeit fängt mit einer Beschreibung des Zustands der Kohlenbergbauindustrie weltweit und des zukünftigen Bedarfes für Kohle an. Danach folgt eine allgemeine Beschreibung des Restrukturierungsprozesses des Kohlenbergbaus in Rumänien und eine vertiefende Untersuchung der Situation im Schiltal infolge des Umstrukturierungsprozesses. Die schwierige sozioökonomische Lage im Schiltal braucht konkrete Lösungen; das Potenzial der Region bietet die Möglichkeit für zukünftige Entwicklungen. Eine vollständige, umfangreiche Analyse und ein Entwicklungskonzept wurden durchgeführt bzw. entwickelt. Es werden sowohl die Entwicklung von alternativen Wirtschaftstätigkeiten, als auch die Modernisierung und Rentabilisierung des traditionellen Bergbaus begründet.

Page generated in 0.0468 seconds