• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

APPLICATION OF CONDITIONAL SIMULATION MODEL TO RUN-OF-MINE COAL SAMPLING FREQUENCY DETERMINATION AND COAL QUALITY CONTROL AT THE POWER PLANT (BLENDING, GOAL PROGRAMMING, MICROCOMPUTER).

BARUA, SUKHENDU LAL. January 1985 (has links)
Run-of-mine (ROM) coal sampling is one of the most important factors in determining the disposition of ROM coal for an overall emission control strategy. Determination of the amount of sample, or still better, the frequency of ROM coal sampling is thus essential to the analysis of overall emission control strategies. A simulation model of a portion of the Upper Freeport coal seam in western Pennsylvania was developed employing conditional simulation. On the simulated deposit, different mining methods were simulated to generate ROM coal data. ROM coal data was statistically analyzed to determine the sampling frequency. Two schemes were suggested: (1) the use of geostatistical techniques if there is spatial correlation in ROM coal quality, and (2) the use of classical statistics if the spatial correlation in ROM coal quality is not present. Conditions under which spatial correlation in ROM coal quality can be expected are also examined. To link the ROM coal and coals from other sources to coal stockpiles and subsequently to solve coal blending problems, where varying qualities of stockpiled coals are normally used, an interactive computer program was developed. Simple file-handling, for stockpiling problems, and multi-objective goal programming technique, for blending problems, provided their solutions. The computer program was made suitable for use on both minicomputer and microcomputer. Menu-driven and interactive capabilities give this program a high level of flexibility that is needed to analyze and solve stockpiling and blending problems at the power plant.

Page generated in 0.0739 seconds