• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 16
  • 16
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Axisymmetric Coanda-Assisted Vectoring

Allen, Dustin S 01 May 2008 (has links)
An examination of parameters affecting the control of a jet vectoring technique used in the Coanda-assisted Spray Manipulation (CSM) is presented. The CSM makes use of an enhanced Coanda effect on axisymmetric geometries through the interaction of a high volume primary jet flowing through the center of a collar and a secondary high-momentum jet parallel to the first and adjacent to the convex collar. The control jet attaches to the convex wall and vectors according to known Coanda effect principles, entraining and vectoring the primary jet, resulting in controllable r-θ directional spraying. Several control slots (both annular and unique sizes) and expansion radii were tested over a range of momentum flux ratios to determine the effects of these variables on the vectored jet angle and profile. Two- and three-component Particle Image Velocimetry (PIV) was used to determine the vectoring angle and the profile of the primary jet in each experiment. The experiments show that the control slot and expansion radius, along with the momentum ratios of the two jets, predominantly affected the vectoring angle and profile of the primary jet. The Reynolds number range for the primary jet at the exit plane was between 20,000 and 80,000. The flow was in the incompressible Mach number range (Mach< 0.3).
12

Time-Resolved Analysis of Circulation Control over Supercritical Airfoil using Digital Particle Image Velocimetry (DPIV)

Hussain, Mian M. 07 January 2005 (has links)
Active pneumatic flow control methods as applied to aerospace applications have shown noteworthy improvements in lift compared to traditional means. The General Aviation Circulation Control (GACC) concept currently under investigation at NASA's Langley Research Center (LaRC) is an attempt at addressing some of the fundamental obstacles related to the successful development and implementation of such techniques. The primary focus of research in the field of high lift pneumatic devices is to investigate ways of obtaining significant improvements in the lift coefficient without resorting to moving surfaces. Though it has been demonstrated that the lift coefficient can be amplified in a variety of ways, the chosen method for the current work is via enhanced circulation stemming from a trailing edge Coanda jet. A secondary objective is to reduce the amount energy expenditure used in these pneumatic techniques by implementing time-variant flow. This paper describes experimental observations of the flow behavior at the trailing edge of a modified water tunnel based supercritical airfoil model that exploits both steady and pulsed Coanda driven circulation control. A total of 10 sets of data, excluding a baseline case of no Coanda jet, were sampled with five cases each for steady and pulsed flow, the latter at a reduced frequency, f+, of 1. Two cases of equal momentum coefficient but with varying forced frequencies were isolated for further study in an attempt to accurately compare the resultant flow dynamics of each method. All measurements were taken at a zero-lift angle of attack by means of a non-invasive time accurate flow visualization technique (DPIV). Vorticity behavior was investigated using Tecplot® and a MATLAB® program was developed to quantify the Strouhal Number of time-averaged velocity fluctuations moving aft of the Coanda surface for each case. / Master of Science
13

Modélisation de la dispersion de polluants dans un milieu marin via les oueds et les émissaires sous marins. Application à la pollution de la Baie de Tanger-Maroc. / Modeling of pollutants dispersion into a marine environment through wadis and submarine outfalls. Application to the pollution of the Bay of Tangier -Morocco

Belcaid, Aïcha 11 November 2013 (has links)
Notre travail de thèse présente une contribution à l'étude du comportement d'un jet flottant horizontal, représentatif de la dispersion de rejets dans un milieu marin. Il consiste à modéliser ce type d'écoulement par une approche mathématique basée sur la résolution numérique moyennant la méthode des volumes finis, à valider le modèle numérique par des mesures à échelle réduite sur des maquettes expérimentales, et, enfin, à simuler la dispersion de polluants à grande échelle sur un cas réel. Trois cas d’étude ont été abordés:Le premier cas est relatif à l’étude numérique et expérimentale d'un jet flottant turbulent rond et "non-Boussinesq", injecté horizontalement dans un milieu statique et homogène. Les résultats ont permis de décrire la nature du jet et son comportement en fonction des conditions initiales d’éjection. La deuxième étude a concerné un autre cas représentatif des rejets des émissaires de stations d'épuration. Il s’agit d’un jet pariétal admettant l’approximation de Boussinesq en régime de convection mixte. L’objectif ici est d’étudier l'influence de l'effet combiné de la turbulence et de la présence de la paroi sur le comportement du jet. Dans le dernier cas d’étude, on a modélisé, en 2D et en 3D, à grande échelle un processus côtier de dispersion de rejets en surface libre appliqué sur le cas de la pollution de la baie de Tanger. Les résultats ont permis de visualiser le mécanisme de la dispersion et d’avoir des informations précieuses sur l’écoulement généré au voisinage des plages par l’interaction des rejets et des mouvements de flux et de reflux de la marée. / This work is a contribution to the study of horizontal buoyant jet behavior that presents the dispersion of discharges into the marine environment. It consists in the modeling of this flow by a mathematical approach based on numerical simulation by means of the finite volume method, the validation of a numerical model by measurements on experimental model at a small, and, finally, the simulation of pollutant dispersion on a large scale on a real case. Three cases of study were broached: The first case relates to the experimental and numerical study of horizontal round turbulent non-Boussinesq buoyant jet in a static homogeneous environment. The results were used to describe the nature and the behavior of the jet as a function of the initial conditions of ejection. The second study involved another case of discharges from outfalls. We investigated a numerical and experimental study about a horizontal buoyant wall turbulent jet in a static homogeneous environment. The aim was to analyze the influence the effect of both turbulence and wall boundary on the behavior of the jet. The latter case of study focused on numerical simulation in 2D and 3D of the coastal process of discharges dispersion on a free surface. This modeling dealt more precisely with the dispersion of discharges into a marine environment in the presence of cross flows. The bay of Tangier in Morocco was chosen as an application site. The results made it possible to visualize the dispersion mechanism and to gain valuable information on the flow generated by the interaction of discharges and high/low tide movements near the beaches of the bay.
14

Experimental and Numerical Study of Micro-Fluidic Oscillators for Flow Separation Control / Etude Expérimentale et Numérique de Micro-Oscillateurs Fluidiques pour le Contrôle d'Ecoulements Décollés

Wang, Shiqi 01 September 2017 (has links)
Les oscillateurs fluidiques qui peuvent générer des excitations périodiques sont des actionneurs très prometteurs pour des applications de contrôle actif des écoulements. Les oscillations sont en effet complètement auto-induites et produites en l'absence de parties mobiles ce qui rend ces actionneurs très intéressants en termes de fiabilité et de robustesse. Ce travail de thèse avait pour objectif principal d'identifier les mécanismes physiques qui contrôlent la dynamique de fonctionnement de ce type d'oscillateurs fluidiques et de proposer des lignes directrices pour la conception d'oscillateurs dont les performances soient adaptées aux applications de contrôle d'écoulements envisagées. L'analyse expérimentale de plusieurs prototypes couplée à des simulations numériques a permis de mettre en évidence que le mécanisme de basculement du jet dans ce type d'oscillateurs est contrôlé par les gradients de pression existants au niveau de deux parties critiques de ces actionneurs. A partir de cette analyse, une relation simple a été établie permettant d'estimer la fréquence des oscillations. Deux méthodes de synchronisation, permettant le contrôle du déphasage entre les actionneurs, ont été proposées et validées expérimentalement ainsi qu'à l'aide de simulations numériques. Une matrice de micro­ oscillateurs fluidiques a été conçue, fabriquée et finalement intégrée sur une rampe installée en soufflerie. L'analyse expérimentale de son efficacité pour le contrôle de l'écoulement séparé a mis en évidence un gain important par rapport aux résultats obtenus lors de travaux précédents sur des écoulements de paroi similaires à l'aide d'autres types d'actionneurs fluidiques. / Fluidic oscillators which can generate periodic excitations are very promising for active flow control applications, due to their reliability and robustness, as their internal flow oscillation is totally self-induced and self-sustained. The main objective of this work is to identify the underlying mechanisms controlling the dynamics of this kind of fluidic oscillator and to propose guiding lines for the design of oscillators. Experimental analysis of several oscillator prototypes and associated numerical simulations have permitted to explain that the jet switching in this kind of oscillator is controlled by pressure gradients in two critical parts of the device. From these analyses, a simple function has been proposed to estimate the oscillation frequency. Two synchronization methods, allowing the control of the phase lag between the actuators, have been proposed and validated experimentally and by numerical simulations. An array of micro-fluidic oscillators has then been designed and tested on a ramp separated flow, showing much higher efficiency compared to other kind of fluidic actuators tested on similar wall flows in previous studies.
15

Vliv omezujících stěn na proudění z ventilační vyústky / Influence of boundary walls on the flow from the ventilation outlet

Molčan, Filip January 2018 (has links)
The goal of this work is to experimentally assess the influence of limiting walls of Škoda Octavia 3 automobile cabin to the air jet flowing from the right-front situated automotive vent which is part of a car dashboard. The experiment is performed by the smoke visualization method. There is a single construction option measured for an experiment. The setup of the vanes direction and the air flow rate are modified for this option. The experiment is divided into two phases. In the first phase, the visualization of the free air flow is conducted. In the second phase, exit plates are constructed and consequently, the visualization of the wall-jet flow is conducted. The results of both are compared to each other. The results imply that the influence of the surrounding surfaces must be taken into account with the increasing flow rate for the vanes set in the direction of upper-right, middle-right, and middle-middle. There is a direct interaction between the flow and exit plates (the flow impact, the Coanda effect). The free flow does not contain the information about the mutual interaction between the flow and the exit plates, as it is in the case of the wall-jet flow. In the case of the wall-jet flow, the opening of the flow takes place due to the effect of the impact and the subsequential suction caused by the Coanda effect. The exit plates substituting the car dashboard and the front window contribute to the prevention of the air intake from surrounding space and consequently to earlier flow opening from the vent. The present work also contains the measurement methodology and the image evaluation, the comparison with previous free flow measurements (70% match) and the comparison to the measurement of hot-wire anemometry method.
16

The Influence of Season, Heating Mode and Slope Angle on Wildland Fire Behavior

Gallacher, Jonathan R 01 February 2016 (has links) (PDF)
Wildland fire behavior research in the last 100 years has largely focused on understanding the physical phenomena behind fire spread and on developing models that can predict fire behavior. Research advances in the areas of live-fuel combustion and combustion modeling have highlighted several weaknesses in the current approach to fire research. Some of those areas include poor characterization of solid fuels in combustion modeling, a lack of understanding of the dominant heat transfer mechanisms in fire spread, a lack of understanding regarding the theory of live-fuel combustion, and a lack of understanding regarding the behavior of flames near slopes. In this work, the physical properties, chemical properties and burning behavior of the foliage from ten live shrub and conifer fuels were measured throughout a one-year period. Burn experiments were performed using different heating modes, namely convection-only, radiation-only and combined convection and radiation. Models to predict the physical properties and burning behavior were developed and reported. The flame behavior and associated heat flux from fires near slopes were also measured. Several important conclusions are evident from analysis of the data, namely (1) seasonal variability of the measured physical properties was found to be adequately explained without the use of a seasonal parameter. (2) ignition and burning behavior cannot be described using single-parameter correlations similar to those used for dead fuels, (3) moisture content, sample mass, apparent density (broad-leaf species), surface area (broad-leaf), sample width (needle species) and stem diameter (needle) were identified as the most important predictors of fire behavior in live fuels, (4) volatiles content, ether extractives, and ash content were not significant predictors of fire behavior under the conditions studied, (5) broadleaf species experienced a significant increase in burning rate when convection and radiation were used together compared to convection alone while needle species showed no significant difference between convection-only and convection combined with radiation, (6) there is no practical difference between heating modes from the perspective of the solid—it is only the amount of energy absorbed and the resulting solid temperature that matter, and (7) a radiant flux of 50 kW m-2 alone was not sufficient to ignite the fuel sample under experimental conditions used in this research, (8) the average flame tilt angle at which the behavior of a flame near a slope deviated from the behavior of a flame on flat ground was between 20° and 40°, depending on the criteria used, and (9) the traditional view of safe separation distance for a safety zone as the distance from the flame base is inadequate for fires near slopes.

Page generated in 0.0638 seconds