Spelling suggestions: "subject:"coastal forest ecologicaldata."" "subject:"oastal forest ecologicaldata.""
1 |
Regeneration failure and the Acacia karroo successional pathway in coastal dune forests in KwaZulu-Natal, South Africa.Boyes, Lauren J. January 2007 (has links)
Monospecific stands of Acacia karroo establish naturally on disturbed coastal dunes in KwaZulu-Natal, South Africa. While the A. karroo successional pathway is successful in rehabilitating mined dunes at the Richards Bay Minerals mining company (RBM), the same pathway has become arrested in the coastal dune forest at Cape Vidal in the Greater St. Lucia Wetland Park. This study examines the efficacy of the A. karroo successional pathway for restoring disturbed coastal dune forests. Dispersal of seeds and successful recruitment of seedlings are essential for habitat restoration. Seed and seedling banks were compared between previously disturbed A. karroo stands and adjacent forest at Cape Vidal. Different seed bank composition and higher seed bank richness in the forest suggest that seed dispersal into A. karroo stands is limited. Protected seed banks in A. karroo stands had increased seedling richness, indicating that dispersal limitation does not fully explain the lack of seedling establishment. At RBM, the seed bank richness of A. karroo stands increased with age since mining. While cumulative species richness of the seed bank of the oldest A. karroo stand at RBM was marginally lower than that at Cape Vidal, successful rehabilitation at RBM is associated with low seedling mortality. Consequently, forest tree species richness is high at RBM in the A. karroo stands and is converging on natural forest richness and composition. Although seed dispersal is reduced, it does not totally limit establishment of forest tree species in A. karroo stands at Cape Vidal, which implicates a post-establishment factor. Soil fertility potentially reduces seed germination and seedling growth. Soil nutrients in A. karroo stands at Cape Vidal were similar to those in the adjacent forest, and total nitrogen levels in A. karroo stands at Cape Vidal were higher than at RBM. Thus, soil conditions were unlikely to be limiting tree regeneration in A. karroo stands. Total nitrogen accumulated in the oldest stand at RBM at a rate of 10.0 g.m2.y(1 and a similarly rapid rate occurred at Cape Vidal. Therefore the A. karroo stands were not nitrogen limited. Nitrogen supplementation experiments at Cape Vidal demonstrated that a range of forest tree species establish in A. karroo stands regardless of nitrogen level, but there is low survival of seedlings. Thus, nitrogen availability is not arresting succession at Cape Vidal. Herbivory can also inhibit seedling recruitment. Selective feeding may enhance the persistence of species with defences against herbivory, such as A. karroo, ultimately altering the tree community composition. Browsing and trampling by large mammalian herbivores in A. karroo stands at Cape Vidal decreased survival and growth of forest tree seedlings. Large herbivores such as kudu, waterbuck, bushbuck and red duiker preferentially used the A. karroo stands as they offer abundant food and their topography allowed easy movement. This topdown pressure reduced recruitment, growth, and survival of seedlings of undefended species. Few wild herbivores occur at RBM, which allowed succession to proceed unhindered, ultimately restoring coastal dune forest at this site. Despite successful rehabilitation of coastal dune forest on mined dunes at RBM, limited seed dispersal and high levels of herb ivory have arrested succession at Cape Vidal. Thus, the A. karroo successional pathway must be implemented only after careful consideration of site-specific factors such as distance to a source of propagules and the intensity of herbivory in the system. In areas where herbivore densities are high, management interventions focusing on reducing herb ivory and encouraging visitation by seed dispersers are necessary for the successful use of this successional pathway. / Thesis (M.Sc.)-University of KwaZulu-Natal, Pietermaritzburg, 2007.
|
2 |
Resprouting and multi-stemming and the role of the persistence niche in the structure and dynamics of subtropical coastal dune forest in KwaZulu-Natal province, South Africa.Nzunda, Emmanuel F. January 2008 (has links)
Resprouting is an important means of plant regeneration especially under conditions that do not favour regeneration through seeding such as frequent disturbances, low productivity, unfavourable soil conditions, extreme cold and limited understorey light availability. Sprouts may be advantageous over seedlings because they have higher survival and growth rates than seedlings, since they use resources from parent plants unlike seedlings that have to acquire their own resources. Resprouting is well documented for ecosystems that experience severe disturbances that damage aboveground biomass. For example, resprouting is important for plant persistence against fire in fire-prone savannas and Mediterranean shrub-lands, and hurricanes and cyclones in tropical forests. In these ecosystems, resprouting often results in multi-stemming, because this dilutes the risk of damage among many stems, improving the chances of individual survival. This study was conducted at coastal dune forest at Cape Vidal in north-eastern South Africa, where there is a high incidence of multi-stemmed trees due to resprouting in response to chronic disturbances of low severity. This study examines (1) the importance of resprouting to tree survival and dynamics in an environment where disturbance severity is low but pervasive, and (2) how this resprouting strategy differs from the more familiar sprouting response to severe disturbances such as fire and hurricanes. Analysis of the relationship between multi-stemming and a number of disturbances potentially causing multi-stemming revealed that stem leaning and substrate erosion were the most important disturbances associated with multi-stemming. There were fewer multistemmed trees on dune slacks that had a stable substrate and were protected from sea winds than on dune crests and slopes that had unstable substrate and were exposed to sea winds. Trees resprouted and became multi-stemmed from an early stage to increase their chances of survival against leaning caused by strong sea winds and erosion, and occasional slumping of the unstable dune sand substrate. These low severity disturbances are persistent and are referred to as chronic disturbances in this thesis. As a result of these chronic disturbances, both single and multi-stemmed trees had short stature because taller individuals that emerged above the tree canopy would be exposed to wind damage. Under chronic disturbances plants may manifest a phylogenetically determined sprouting response. However, in this study resprouting and multi-stemming were the results of the tree-disturbance interaction and not a property of a plant or species and were not phylogenetically constrained. Because the disturbances are predominantly of low severity, leaning trees were able to regain the vertical orientation of the growing section by turning upward (a process referred to as ‘turning up’ in this study) and hence survive without resprouting. Species that were prone to turning upward had a low incidence and degree of leaning of their individuals, low frequency of loss of primary stems and high abundance of individuals. Although turning up is less costly to the individual than resprouting, it could only be used by leaning trees that had small angles of inclination and were not eroded. High intensities of the latter require that individuals resprout to survive. The form and function of resprouting varied between seedlings and juvenile and mature trees. Resprouting in seedlings resulted in a single replacement shoot, unlike sprouting in juvenile and mature trees that resulted in multi-stemmed trees. Like sprouting in juvenile and mature trees, sprouting in seedlings was not phylogenetically constrained. Resprouting in seedlings increased seedling persistence; hence species with more sprout seedlings had larger individual seedlings and seedling banks. Resprouting in seedlings increased the chances of seedling recruitment, whereas resprouting in juvenile and mature trees increased the chances of an established plant maintaining its position in the habitat. After disturbances of high severity, which destroy the photosynthesizing parts, plants resprout using carbohydrates stored below- or above ground. In this study, good resprouters stored more carbohydrates both below- and above ground than poor resprouters. The carbohydrates were mobilized for resprouting after disturbance. More carbohydrates were stored in stems than in roots because the prevailing disturbances were mostly of low severity and hence above ground resources were readily available. Similar to storage by plants in severely disturbed habitats, carbohydrates were stored by reserve formation, which competes for carbohydrates with growth and maintenance and forms permanent storage, rather than accumulation, which temporarily stores carbohydrates in excess of demands for growth and maintenance. Stored carbohydrates are not necessary for resprouting of plants after disturbances of low severity because they can resprout using resources remobilized directly from the disturbed photosynthesizing parts. However, in this study, stored carbohydrates served as a bet-hedge against occasional severe disturbances that occurred in addition to chronic disturbances. Allocation of carbohydrates to permanent storage diverts them from growth and reproduction and hence good resprouters had lower growth rates, seed output, seed size and seedling recruitment than poor resprouters. However, the costs of these traits that resulted in low recruitment from seed by good resprouters, were compensated for by high persistence of established individuals of good resprouters through recruitment of sprout stems. This study demonstrates that resprouting is not only advantageous in severely disturbed environments, but also in environments where disturbances are of low severity but nevertheless confer an advantage on individuals that persist. Thus in forest environments where aboveground biomass is seldom destroyed and individuals are relatively long-lived, resprouting can confer significant fitness and selective advantage on individuals. / Thesis (Ph.D.)-University of KwaZulu-Natal, Pietermaritzburg, 2008.
|
Page generated in 0.0874 seconds