• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 527
  • 136
  • 87
  • 63
  • 36
  • 8
  • 7
  • 7
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • Tagged with
  • 1268
  • 207
  • 182
  • 157
  • 136
  • 118
  • 109
  • 96
  • 95
  • 93
  • 90
  • 86
  • 84
  • 78
  • 76
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
481

An Investigation of Wear-Resistant Coatings on an A390 Die-Cast Aluminum Substrate

Mower, D. Adam 20 March 2007 (has links) (PDF)
In this investigation, four coatings were tested for their ability to increase the wear life of A390 aluminum primary clutch sheaves used in continuously variable transmission (CVT). The coatings tested were: hard chrome, electroless nickel metal, hard coat anodizing and composite ceramic coating. The primary clutch sheave material is a die-cast A390 aluminum. A wear test stand was developed to duplicate wear found on CVTs currently in use. The wear was evaluated using four methods. First, the change in shift characteristics of the CVT while running on the wear test stand, second a change in performance using an ATV and chassis dynamometer, third the amount of material lost, through wear, was measured using a profilometer, and finally a scanning electron microscope which was used to identify the dominate mechanism of wear in the sheave material. All of the tests showed the hard chrome coating to have the lowest wear rates and the best wear characteristics. The electroless nickel metal coating did improve the wear life of the CVT but had very high variation. The hard coat anodized and ceramic composite coatings were eliminated early in testing because of poor performance.
482

Developing New In-Mold Coating Formulations for Electrostatic painting and Nano-tapes for Electromagnetic Interference Shielding

Cai, Kaiyu January 2021 (has links)
No description available.
483

Synthesis, Processing and Characterization of Polymer Derived Ceramic Nanocomposite Coating Reinforced with Carbon Nanotube Preforms

Yang, Hongjiang 01 January 2014 (has links)
Ceramics have a number of applications as coating material due to their high hardness, wear and corrosion resistance, and the ability to withstand high temperatures. Critical to the success of these materials is the effective heat transfer through a material to allow for heat diffusion or effective cooling, which is often limited by the low thermal conductivity of many ceramic materials. To meet the challenge of improving the thermal conductivity of ceramics without lowering their performance envelope, carbon nanotubes were selected to improve the mechanical properties and thermal dispersion ability due to its excellent mechanical properties and high thermal conductivity in axial direction. However, the enhancements are far lower than expectation resulting from limited carbon nanotube content in ceramic matrix composites and the lack of alignment. These problems can be overcome if ceramic coatings are reinforced by carbon nanotubes with good dispersion and alignment. In this study, the well-dispersed and aligned carbon nanotubes preforms were achieved in the form of vertically aligned carbon nanotubes (VACNTs) and Buckypaper. Polymer derived ceramic (PDC) was selected as the matrix to fabricate carbon nanotube reinforced ceramic nanocomposites through resin curing and pyrolysis. The SEM images indicates the alignment of carbon nanotubes in the PDC nanocomposites. The mechanical and thermal properties of the PDC nanocomposites were characterized through Vickers hardness measurement and Thermogravimetric Analysis. The ideal anisotropic properties of nanocomposites were confirmed by estimating the electrical conductivity in two orthogonal directions.
484

Development Of Titanium Nitride/molybdenum Disulphide Composite Tribological Coatings For Cryocoolers

Pai, Anil 01 January 2004 (has links)
Hydrogen is a clean and sustainable form of carrier of energy that can be used in mobile and stationary applications. At present hydrogen is produced mostly from fossil sources. Solar photoelectrochemical processes are being developed for hydrogen production. Storing hydrogen can be done in three main ways: in compressed form, liquid form and by chemical bonding. Near term spaceport operations are one of the prominent applications for usage of large quantities of liquid hydrogen as a cryogenic propellant. Efficient storage and transfer of liquid hydrogen is essential for reducing the launch costs. A Two Stage Reverse Turbo Brayton Cycle (RTBC) CryoCooler is being developed at University of Central Florida. The cryocooler will be used for storage and transport of hydrogen in spaceport and space vehicle application. One part in development of the cryocooler is to reduce the friction and wear between mating parts thus increasing its efficiency. Tribological coatings having extremely high hardness, ultra-low coefficient of friction, and high durability at temperatures lower than 60 K are being developed to reduce friction and wear between the mating parts of the cryocooler thus improving its efficiency. Nitrides of high-melting-point metals (e.g. TiN, ZrN) and diamond-like-carbon (DLC) are potential candidates for cryogenic applications as these coatings have shown good friction behavior and wear resistance at cryogenic temperatures. These coatings are known to have coefficient of friction less than 0.1 at room temperature. However, cryogenic environment leads to increase in the coefficient of friction. It is expected that a composite consisting of a base layer of a hard coating covered with layer having an ultra-low coefficient of friction would provide better performance. Extremely hard and extremely low friction coatings of titanium nitride, molybdenum disulphide, TiN/MoS2 bilayer coatings, DLC and DLC/MoS2 bilayer coatings have been chosen for this application. TiN film was deposited by reactive DC magnetron sputtering system from a titanium target and MoS2 film was deposited by RF magnetron sputtering using a MoS2 target. Microwave assisted chemical vapor deposition (MWCVD) technique was used for preparation of DLC coatings. These composite coatings contain a solid lubricating phase and a hard ceramic matrix phase as distinctly segregated phases. These are envisioned as having the desired combination of lubricity and structural integrity. Extremely hard coatings of TiN and DLC were chosen to provide good wear resistance and MoS2 was chosen as the lubricating phase as it provides excellent solid lubricating properties due to its lamellar crystal structure. This thesis presents preparation; characterization (SEM and XRD), microhardness and tribological measurements carried out on TiN and TiN/MoS2 coatings on aluminum and glass substrate at room temperature. It also presents initial development in preparation of DLC coatings.
485

Correlating Microstructural Development And Failure Mechanisms To Photo Stimulated Luminescence Spectroscopy And Electrochemical Impedance Spectroscopy In Thermal Barrier Coatings

Jayaraj, Balaji 01 January 2011 (has links)
Thermal barrier coatings (TBCs) are widely used for thermal protection of hot section components in turbines for propulsion and power generation. Applications of TBCs based on a clearer understanding of failure mechanisms can help increase the performance and life-cycle cost of advanced gas turbine engines. Development and refinement of robust nondestructive evaluation techniques can also enhance the reliability, availability and maintainability of hot section components in gas turbines engines. In this work, degradation of TBCs was non-destructively examined by photostimulated luminescence spectroscopy (PSLS) and electrochemical impedance spectroscopy (EIS) as a function of furnace thermal cycling carried out in air with 10-minute heat-up, 0.67, 9.6 and 49.6 - hour dwell duration at 1121°C (2050°F), and 10-minute forced-air quench. TBCs examined in this study consisted of either electron beam physical vapor deposited and air plasma sprayed yttria-stabilized zirconia (YSZ) on a variety of bond coat / superalloy substrates including bond coats of NiCoCrAlY and (Ni,Pt)Al, and superalloys of CMSX-4, Rene‟N5, Haynes 230 and MAR-M-509. Detailed microstructural characterization by scanning electron microscopy and energy dispersive spectroscopy was carried out to document the degradation and failure characteristics of TBC failure, and correlate results of PSLS and EIS. Mechanisms of microstructural damage initiation and progression varied as a function of TBC architecture and thermal cycling dwell time, and included undulation of the interface between the thermally grown oxide (TGO) and bond coats, internal oxidation of the bond coats, and formation of Ni/Co-rich TGO. These microstructural observations were correlated to the evolution in compressive residual stress in the TGO scale determined by PSLS shift. Correlations iv include stress-relief and corresponding luminescence shift towards stress-free luminescence (i.e. = 14402 cm-1 and  = 14432 cm-1 ) associated with subcritical cracking of the TGO scale and stress-relaxation associated with gradual shift in the luminescence towards stress-free luminescence (i.e.  = 14402 cm-1 and  =14432 cm-1 ) is related to the undulation of TGO/bondcoat interface (e.g., rumpling and ratcheting). Microstructural changes in TBCs such as YSZ sintering, TGO growth, and subcritical damages within the YSZ and TGO scale were also correlated to the changes in electrochemical resistance and capacitance of the YSZ and TGO, respectively. With thermal exposure the YSZ/TGO resistance and capacitance increased and decreased as result of sintering and TGO growth. With progressive thermal cycling damages in the TGO was related to the TGO capacitance showing a continuous increase and at failure TGO capacitance abruptly increased with the exposure of bondcoat. Further correlations among the microstructural development, PSLS and EIS are documented and discussed, particularly as a function of dwell time used during furnace thermal cycling test, with due respect for changes in failure characteristics and mechanisms for various types of TBCs
486

Antibacterial Coatings Derived from Novel Chemically Responsive Vesicles

Mobley, Emily B 01 August 2020 (has links) (PDF)
In order for a drug, or any material used for the purpose of eliciting a change in an organisms’ physical or chemical state, to be effective it must reach the intended target intact and for a sustained rate over time. Drug delivery systems encapsulate a drug to protect it from degradation, prevent side reactions, increase solubility, improve accumulation rates at target sites, and release drugs at a controlled rate. Controlled and sustained release of drugs is achieved by degradation of the carrier triggered by breaking dynamic chemical bonds caused by changes in the chemical environment such as pH or redox conditions. Slow, first order kinetic release of drugs increase therapeutic efficacy while also reducing side effects and other cytotoxicity issues. Up and coming drug delivery systems include hydrogels and nanocarriers such as vesicles. Hydrogel drug delivery systems are unique three-dimensional networks of crosslinked hydrophilic polymers that contain anywhere from 50-90 wt% of water. Drugs can be loaded via encapsulation during the gelation process or may be covalently bound to the polymer backbone before gelation. Amphiphilic molecules or polymers that self-assemble in aqueous solutions to form supramolecular nanostructures, such as vesicles, can encapsulate hydrophilic drugs in the aqueous interior or hydrophobic drugs in the lipophilic bilayer membrane. This study seeks to embed vesicles into a hydrogel to create a hybrid drug delivery system which may be applied as a coating to medical devices to prevent bacterial adhesion and growth, injected directly to a target site, or as an additive for wound dressings. This hybrid system mitigates burst release from the hydrogel, as well as stabilizes the vesicles to afford a longer shelf life. Vesicles are prepared from a novel supramolecular amphiphile composed of thio-alkyl modified��-cyclodextrin as a macrocyclic host, and an adamantyl-dithiopropionic acid modified poly(ethylene glycol) as a linear guest. This host-guest system forms inclusion complexes that self-assemble to bilayered vesicles, which may encapsulate a payload, in aqueous solutions. These vesicles serve as three-dimensional multivalent junctions to form a hydrogel, which may encapsulate a second payload, through a dynamic disulfide exchange crosslinking reaction. This novel drug delivery system will be capable of dual and selective release of two different encapsulated payloads. A pH sensitive acid labile bond embedded in the crosslinker will cleave under acidic conditions to release the payload enclosed in the hydrogel matrix, while a disulfide bond embedded in the supramolecular amphiphile of the free vesicle can be cleaved in the presence of naturally occurring antioxidant glutathione, GSH, to release the second payload. It has been discovered that vesicles efficaciously form, can encapsulate a payload, and are stable for several weeks, up to a month. Vesicle stability is examined in the presence of both intracellular and extracellular concentrations of GSH, and it is found that vesicles are more stable in extracellular concentrations of GSH. Crosslinking of vesicles is attempted at several molecular weights of linear thiol terminated poly(ethylene glycol) crosslinker, concentrations ratios of crosslinker: vesicle, pHs, and temperatures. It can be concluded that the crosslinking density with the linear crosslinker is not high enough to form a hydrogel. Future studies will include 4-arm crosslinkers which are predicted to increase the number of crosslinking points and hence the crosslinking density.
487

Influence of Surface Roughness Lay and Surface Coatings on Galling During Hot Forming of Al-Si Coated High Strength Steel

Yousfi, Mohamed Amine January 2011 (has links)
High strength boron steels are commonly used as structural reinforcements or energy absorbing systems in automobile applications due to their favourable strength to weight ratios. The high strength of these steels leads to several problems during forming such as poor formability, increased spring back, and tendency to work-harden. In view of these difficulties, high strength boron steels are usually formed by press hardening at elevated temperatures with a view to facilitate forming and simultaneous hardening by quenching of complex shaped parts.The high strength steel sheets are used with an Al–Si coating with a view e.g. to prevent scaling of components during hot-metal forming. The Al-Si coated high strength steel can lead to problems with galling (i.e. material transfer from the coated sheet to the tool surface) which have a negative influence on the quality of the produced parts as well as the process economy. The available results in the open literature pertaining to high temperature galling are very scarce. With this in view, the friction and wear behaviours of different tool steel coatings and different roughness lay directions sliding against Al–Si-coated high-strength steel at elevated temperatures have been investigated by using a high-temperature reciprocating friction and wear tester at temperature of 900 °C.The results have shown that parallel sliding with respect to the surface roughness lay reduces the severity of galling compared to perpendicular sliding. None of the coatings included in this study have shown beneficial effects in view of galling. The DLC coating experienced less galling compared to the AlCrN and TiAlN. Post polishing of the coated tool steel has resulted in more severe material transfer with higher and more unstable friction. / <p>Validerat; 20111022 (anonymous)</p>
488

Gain Flattening Coatings for Improved Performance of Asymmetric Multiple Quantum Well Laser

Tan, Xiaonan 04 1900 (has links)
<p> Compositionally asymmetric multiple quantum well (AMQW) lasers are used for the demonstration of the gain flattening coating functionality. The gain spectra of the lasers are extracted using a non-linear least square fitting method. An optimum facet reflectance spectrum is calculated for a chosen current. For manufacturability, a modified reflectance spectrum of the gain flattening coating is proposed, in order to achieve operation over a wider spectral range without the 'difficult' gap which was a region where lasing was difficult or impossible to achieve due to insufficient gains at these wavelengths. </p> <p> Silicon oxides films with high, medium, and low refractive indices fabricated in an inductively coupled plasma (ICP) enhanced chemical vapor deposition (CVD) system are chosen as the building blocks of the gain flattening coating. An 18-layer coating is designed by the insertion of needle-like refractive index variation with a few optimization methods applied to minimize the merit function. A laser bar holder is custom designed and fabricated. Experiments and modification on the laser bar holder are carried out for better performance. The 18-layer gain flattening coating is then fabricated in the ICPCVD system with an in-situ spectroscopic ellipsometric measurement. It is observed that the non-lasing gap has disappeared after the coating is applied. Without external feedback, the coated laser shows tuning over 85 nm with the central wavelength of 1593 nm, while the uncoated laser has a non-lasing gap of about 25 nm in the central region of the tuning range of 70 nm. </p> <p> Finally, the coherence length of a low coherent source synthesized from the gain flattening coated AMQW laser is measured by using Michelson interferometer. The highest depth resolution that can be achieved is measured as 40 μm. The power intensity of the synthesized low coherence light source from the gain flattening coated AMQW laser is rendered from the interferogram using fast Fourier transform (FFT). </p> / Thesis / Doctor of Philosophy (PhD)
489

COATINGS, CARBONATES, AND CLOSED-BASIN LAKES: A MARTIAN AQUEOUS STORY

Bradley Garczynski (17246398) 19 October 2023 (has links)
<p dir="ltr">This dissertation explores the history of water on Mars through the lens of the Mars 2020 Perseverance rover mission at Jezero crater. In particular, I use in-situ rover observations to characterize evidence of past surface alteration at Jezero crater. I also present investigations of a modern lake analog on Earth to contextualize potential past depositional processes within the Jezero paleolake system.</p>
490

Multifunctional Liquid-Infused Surface Coatings to Prevent Implant-Associated-Infections

Villegas, Martin January 2023 (has links)
Medical implants constitute an essential advancement in modern medicine, often restoring or replacing functionality to failed organs. Whether a medical implant is temporary or permanent, medical implants carry the risk of implant failure due to an infection. Implant-associated infections (IAI) are challenging to treat and often result in increased medical costs, prolonged hospital stays, implant failure, and, in some instances, severe infections that can lead to amputations, sepsis, or mortality. Eradicating an IAI can be challenging since bacteria can form biofilms on the implant’s surface. The biofilms comprise an extracellular matrix protecting the bacterial cells against systemic antibiotics and the host’s immune system. Treating an IAI usually entails a broad range of antibiotic treatment and surgical procedures for tissue debridement or implant replacement. For the reasons stated above, scientists and engineers continue to develop technologies to protect the surface of medical implants against infections. Amongst the new technologies, Liquid-Infused Surfaces (LIS) are renowned for their repellent and anti-fouling properties created by tethering a stable liquid layer onto the surface. However, many challenges remain to adopt this technology for implantable devices. For instance, the high repellent properties can hinder implant-tissue interaction and discourage proper integration with the body. Furthermore, the stable liquid layer is contingent on the surface properties of the coated material. In other words, the long-term stability of these coatings may be compromised if the surface chemistry is covered by biological processes such as biofilm formation from adherent bacteria. This thesis aims to expand on the applications of LIS coatings and enhance their properties for implantable materials. This thesis reviews different types of antibiotic surface coatings and further examines LIS technologies as a viable antibacterial coating for medical implants. Then, three novel multifunctional LIS coatings are presented. The first developed coating enhanced the antibacterial properties of the coating by adding bactericidal agents within the LIS coating. The developed antibiotic liquid-infused coating not only repelled bacteria but also lysed bacteria upon contact. The second coating was designed to promote tissue integration. This multifunctional coating promoted cell deposition and proliferation while remaining repellent toward bacteria, while the conventional LIS coating displayed poor cell availability. Lastly, a collagen-bacteriophage conjugated liquid-infused coating was developed to promote tissue integration while having a two-tier layer of antibacterial protection. This coating was tested in a mouse sepsis model and prevented mortality of all mice, with other groups as high as 90% mortality. These coatings constitute essential steppingstones to bring LIS technology to medical implants. / Dissertation / Doctor of Philosophy (PhD) / Implant-associated infections (IAI) remain a significant problem in modern medicine. IAIs are challenging to treat and often result in increased medical costs, prolonged hospital stays, implant failure, and, in some instances, severe infections that can lead to sepsis or mortality. For these reasons, new technologies have been developed to protect the surface of medical implants against infections. Amongst the new technologies, Liquid-Infused Surfaces (LIS) are renowned for their repellent and anti-fouling properties created by tethering a stable liquid layer onto the surface. This thesis aims to expand on the applications of LIS coatings and enhance their properties for implantable materials. This thesis reviews different types of antibiotic surface coatings, examines LIS technologies, and presents three novel multifunctional LIS coatings. The newly developed coatings enhance the LIS coatings through the addition of antibacterial properties and biomolecules to promote tissue integration.

Page generated in 0.0766 seconds