Spelling suggestions: "subject:"coaxial motor"" "subject:"koaxial motor""
1 |
Aerodynamic development of a contra-rotating shrouded rotor system for a UAVGeldenhuys, Heinrich Jacques 03 1900 (has links)
Thesis (MSc)--Stellenbosch University, 2015. / ENGLISH ABSTRACT: Unmanned aerial vehicles with vertical take-off and landing capabilities have received extensive attention worldwide in the last decade. Their low detectability, high manoeuvrability in confined spaces, and their capability for out-of-sight operations make them practical solutions for an array of military and civilian missions.
The main advantage of shrouded rotors in hover and low speed conditions is the decreased blade tip induced drag when the tip gap is small enough. A well-designed shroud augments the rotor thrust in hover and low axial flight conditions. It also provides noise reduction and safety. A contra-rotating rotor system eliminates the need for separate anti-torque devices, thus producing a smaller footprint and a more compact vehicle.
In this study a more efficient coaxial rotor for the ducted coaxial rotor system as published by (Lee 2010) was developed.
The first phase of the design process consisted of the selection and numerical analysis of the best suited parent airfoils for the rotors by using XFOIL and XFLR 5.
The second phase dealt with the design of a counter-rotating rotor system for the existing cambered shroud as published by (Lee, 2010), using the DFDC-070ES2a two dimensional code, specifically written for ducted rotor optimization.
The final phase of the study dealt with the Computational Fluid Dynamic (CFD) verification of the design in ANSYS-CFX 15.07.
A comparison between the CFX predictions of the newly designed rotor system and the reference design indicates a 33% improvement in hover thrust at the design power input. / AFRIKAANSE OPSOMMING: Onbemande lugvaartuie met vertikale opstyg en landings vermoëns het uitgebreide aandag wêreldwyd in die laaste dekade geniet. Hul lae waarneembaarheid, hoë beweegbaarheid in beperkte ruimtes, en hul vermoë om buite-sig operasies uit te voer maak dat hulle praktiese oplossings vir 'n verskeidenheid van militêre en burgerlike missies is.
Die grootste voordeel van gehulde rotors in hangvlug en lae spoed omstandighede is die afname in die lem punt sleepkrag wanneer die lem punt gaping klein genoeg is. 'n Goed ontwerpde omhulsel dra by tot die rotor stukrag in hangvlug en lae aksiale vlug omstandighede. Dit bied ook geraasreduksie en veiligheid. 'n Kontra-roterende rotorstelsel skakel die vereiste van afsonderlike anti-wringkrag toestelle uit, wat lei tot 'n kleiner voetspoor en 'n meer kompakte voertuig.
In hierdie studie is 'n meer doeltreffende koaksiale rotor vir die gehulde koaksiale rotor stelsel soos gepubliseer deur (Lee 2010) ontwikkel.
Die eerste fase van die ontwerp-proses het bestaan uit die seleksie en numeriese analise van die mees geskikte lemprofiele vir die rotors deur die gebruik van XFOIL en XFLR 5.
Fase twee het die ontwerp van 'n teen-roterende rotor stelsel vir die bestaande omhulsel soos gebruik in (Lee, 2010) se publikasie behels. Die ontwerp is met behulp van DFDC-070ES2a, ‘n twee dimensionele kode wat spesifiek vir gehul-rotor optimering geskryf is, gedoen.
Die verifikasie van die nuwe ontwerp is in die finale fase met behulp van die berekeings vloeidinamika sagteware, ANSYS-CFX 15.07 gedoen.
‘n Vergelyking tussen die CFX prestasie voorspelling vir die nuwe rotorstelsel en die gepubliseerde data van (Lee, 2010) toon ‘n 33% toename in hangvlug stukrag by die ontwerpsdrywing.
|
2 |
Optimal Aerodynamic Design of Conventional and Coaxial Helicopter Rotors in Hover and Forward FlightGiovanetti, Eli Battista January 2015 (has links)
<p>This dissertation investigates the optimal aerodynamic performance and design of conventional and coaxial helicopters in hover and forward flight using conventional and higher harmonic blade pitch control. First, we describe a method for determining the blade geometry, azimuthal blade pitch inputs, optimal shaft angle (rotor angle of attack), and division of propulsive and lifting forces among the components that minimize the total power for a given forward flight condition. The optimal design problem is cast as a variational statement that is discretized using a vortex lattice wake to model inviscid forces, combined with two-dimensional drag polars to model profile losses. The resulting nonlinear constrained optimization problem is solved via Newton iteration. We investigate the optimal design of a compound vehicle in forward flight comprised of a coaxial rotor system, a propeller, and optionally, a fixed wing. We show that higher harmonic control substantially reduces required power, and that both rotor and propeller efficiencies play an important role in determining the optimal shaft angle, which in turn affects the optimal design of each component. Second, we present a variational approach for determining the optimal (minimum power) torque-balanced coaxial hovering rotor using Blade Element Momentum Theory including swirl. We show that the optimal hovering coaxial rotor generates only a small percentage of its total thrust on the portion of the lower rotor operating in the upper rotor's contracted wake, resulting in an optimal design with very different upper and lower rotor twist and chord distributions. We also show that the swirl component of induced velocity has a relatively small effect on rotor performance at the disk loadings typical of helicopter rotors. Third, we describe a more refined model of the wake of a hovering conventional or coaxial rotor. We approximate the rotor or coaxial rotors as actuator disks (though not necessarily uniformly loaded) and the wake as contracting cylindrical vortex sheets that we represent as discrete vortex rings. We assume the system is axisymmetric and steady in time, and solve for the wake position that results in all vortex sheets being aligned with the streamlines of the flow field via Newton iteration. We show that the singularity that occurs where the vortex sheet terminates at the edge of the actuator disk is resolved through the formation of a 45 degree logarithmic spiral in hover, which results in a non-uniform inflow, particularly near the edge of the disk where the flow is entirely reversed, as originally hypothesized by previous authors. We also quantify the mutual interference of coaxial actuator disks of various axial spacing. Finally, we combine our forward flight optimization procedure and the Blade Element Momentum Theory hover optimization to form a variational approach to the multipoint aerodynamic design optimization of conventional and coaxial helicopter rotors. The resulting nonlinear constrained optimization problem may be used to map the Pareto frontier, i.e., the set of rotor designs for which it is not possible to improve upon the performance in one flight condition without degrading performance in the other. We show that for both conventional and coaxial rotors analyzed in hover and high speed flight, a substantial tradeoff in performance must be made between the two flight conditions. Finally, computational results demonstrate that higher harmonic control is able to improve the Pareto efficiency for both conventional and coaxial rotors.</p> / Dissertation
|
3 |
Analyse numérique et expérimentale d’un doublet de rotors contrarotatifs caréné au point fixe / Experimental and numerical analysis of a shrouded contrarotating coaxial rotor in hoverHuo, Chao 26 March 2012 (has links)
Cette étude se propose d’analyser le comportement du double rotor contra-rotatif caréné dans lecadre des échelles réduites des microdrones, pour exploiter le potentiel d’amélioration desperformances stationnaires des rotors libres. La demande d’une performance propulsive de hautniveau, alors que les échelles sont très réduites constitue un véritable défi scientifique. De façongénérale, par rapport au rotor libre, l’ajout de la carène permet de piloter la contraction del’écoulement et offre un potentiel de poussée de carène. La tuyère par sa condition d’adaptationpilote le débit entrant à puissance donnée. L’augmentation du débit massique, par comparaison ausystème de rotor libre, amplifie la poussée à travers la dépression distribuée sur toute la surface decaptation. Pour comprendre les lois de fonctionnement d’un système propulsif caréné, il a d’abord été proposé un modèle théorique simplifié basé sur une extension de la théorie de Froude pour les rotors libres: le système rotor est assimilé à un disque actuateur, générateur de débit dans une conduite à section variable. Une simulation Navier Stokes 2D axisymétrique a permis d’optimiser les paramètres de forme du carénage. Les simulations ont confirmé l’influence déterminante des sections d’entrée et de sortie, et relativisé l’impact des formes possibles, pourvu que les variations de sections limitent le décollement de la couche limite. Après conception d’un banc d’essai utilisant un doublet de rotor coaxial placé dans cette carène optimisée, l’étude expérimentale complète et confirme les performances globales du système et qualifie l’écoulement méridien. Enfin, une simulation 3D instationnaire a été entreprise pour compléter l’analyse de l’écoulement autour des rotors. / This study aims to analyze the behavior of shrouded, contrarotating coaxial rotor in the reducedMAVs’ scale in order to exploit its potential to improve the free rotor steady performance. The highhover ability under low operational Reynolds number is therefore, a scientific challenge. Generally,comparing with free rotor, the addition of the shroud decreases the flow contraction and gives thepotential to generate an extra thrust. A suitable nozzle can control the mass flow for a given power.The increased mass flow, comparing with free rotor, amplifies the thrust offered by the lowpressure formed at the air entrance. To understand the principals of shrouded propulsion system, a simplified theory model was first proposed through the extension of Froude theory for free rotors: the double rotor is initially treated as an actuator disk, generating the flow at varied sections through the shroud passage. A 2D simulation which accounts for an axial flow of viscous effects within the actual shroud profile, confirmed effects of all defined geometrical parameters. It further demonstrated that within the non-stalling region of the different crosssections, shroud shape and inlet shape do not have asignificant impact on performance. The experimental study, carried out with coaxial rotor, contributed to the confirmation of the overall performance and the approximation of the flow field through the shroud. Meanwhile, the 3D simulation, developed to better model the actual coaxial rotor in counter rotation, was validated to well solve the steady performance. It was applied to complement the analysis of the flow around the coaxial rotor.
|
Page generated in 0.0755 seconds