• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Physicochemical Properties of Nickel and Cobalt Sulphate Solutions of Hydrometallurgical Relevance

Ting Chen January 2003 (has links)
Producing nickel and cobalt metal by high pressure acid leaching (HPAL) of nickel laterites is becoming one of Australia's largest mineral processing industries. However, the background chemical information for this process, including the fundamental physicochemical properties of acidic metal sulphate leachate solutions, is not well known. In order to improve the efficiency of current and future HPAL plants, high quality physicochemical and thermodynamic data will be necessary. This thesis reports measurements on the densities and heat capacities of nickel and cobalt sulphate solutions and their mixtures along with detailed studies of the nature of the species present and the thermodynamics of their interconversions. Densities and heat capacities of nickel and cobalt sulphate and perchlorate solutions and their ternary mixtures were measured using a vibrating tube densimeter and a flow microcalorimeter respectively. These data were used to calculate the apparent molal volumes and heat capacities of these solutions. Standard partial molal quantities were then obtained by appropriate extrapolation procedures, along with the volume and heat capacity changes of ion pair formation. A comparison has been made between experimental densities and heat capacities with those predicted by Young's rule. Good agreement was obtained except when the degree of complexation varied significantly in the mixturesThe various ion pair species in nickel and cobalt sulphate solutions, along with those of magnesium sulphate (which is a major impurity in HPAL leachates), were reinvestigated by dielectric relaxation spectroscopy. Doubly solvent separated ion pairs, solvent shared ion pairs and contact ion pairs were shown to exist simultaneously in solution and their concentrations were determined from dilute to near-saturated concentrations. Evidence for the possible existence of a triple ion, M2SO4 2+, was also obtained in highly concentrated solutions. The equilibrium constants of the stepwise reactions and the effective hydration numbers of ions and ion pairs were also calculated. The heats of complexation of nickel(II) and cobalt(II) sulphate were determined at different ionic strengths in sodium perchlorate media by titration calorimetry. These data were fitted to a specific ion interaction model to obtain the standard state values. The corresponding entropies of complexation were calculated and were found to be the major contributor to the stability of the complexes.
2

Separation of Cobalt and Nickel using CYANEX 272 for Solvent Extraction / Separation av kobolt och nickel med CYANEX 272 för vätskevätskeextraktion

Kihlbom, Caroline January 2021 (has links)
This project aimed to examine the separation of cobalt and nickel using solvent extraction (SX) with the extractant CYANEX 272 (C272). It was intended to investigate the Co-Ni separation in a sulphate-based leach solution in presence of other contaminants. This is an area of interest because of the difficulty of separating metals of similar properties within the field of hydrometallurgy.  Batch tests, with varying modifiers and diluents, were carried out to examine the effect of organic phase composition on phase separation. The effect of pH on equilibrium was investigated by constructing equilibrium curves. Through various shaking tests, different separation parameters were studied. McCabe-Thiele diagrams were constructed to predict design parameters. In order to simulate a continuous 3-stage countercurrent solvent extraction, batch tests were performed. Scrubbing, as means of impurity removal was also investigated. Finally, the product’s purity was examined by the help of crystallization.  The organic feed mixture that resulted in a sufficient phase separation consisted of C272, tributyl phosphate and naphtha. At pH 4, equilibrium curves showed that equilibrium was either not reached or affected by competing metal ions. A standard equilibrium curve appearance was seen at pH 4.5, resulting in that the theoretical required stages for extraction was calculated to 3 stages (A/O=1). However, a McCabe-Thiele diagram did not give an accurate representation of the more complex case (presence of contaminants). Batch simulation results gave a cobalt recovery of 69% and 100% at pH 4.5 and 4.8, and a nickel recovery of 0% and 3%, respectively. A recommended pH-value for solvent extraction could not be stated, because the choice must be based on operation specifications. Therefore, several different aspects (Co recovery, purity, and economical etc.), must be accounted for. A similar pH-trend was shown in scrubbing, where an increase of pH resulted in an increase of metal ions’ organic concentration. For stripping, acid test results proved 24 g/L sulphuric acid to give the highest cobalt concentration, with a marginal difference in concentration of impurities. An overview of the entire SX process, indicated that extraction, scrubbing, and stripping were all successful operations. The extraction stage showed a Co and Ni recovery of 99% and 0.02%, respectively, and a separation factor of 14250. Distribution results indicated that Al was difficult to remove and was transferred with Co into the product. Therefore, this element must be removed before SX. From noticing an increase of Co:Ni ratio throughout the process, solvent extraction was considered an effective separation method for cobalt and nickel separation. A considerably high purity of cobalt sulphate was produced. However, impurities Al and Ca were also detected in the product. Increasing the acetone volume in crystallization resulted in an increase of Co purity. An increase of the cobalt sulphate crystals formed was observed when increasing the acetone volume, where no impurities were detected.

Page generated in 0.0504 seconds