• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Characterization and Modeling of Stress Evolution During Nickel Silicides Formation

Liew, K.P., Li, Yi, Yeadon, Mark, Bernstein, R., Thompson, Carl V. 01 1900 (has links)
An curvature measurement technique was used to characterize the stress evolution during reaction of a Ni film and a silicon substrate to form nickel silicide. Stress changes were measured at each stage of the silicide growth. When the nickel films were subjected to long-time isothermal annealing, stresses that developed during silicide formation gradually relaxed. Fitting the experimental results with a kinetic model provides insight into the volumetric strain and relaxation behavior of the reacting film and the reaction product. / Singapore-MIT Alliance (SMA)
2

Tin-oxide thin films by thermal oxidation

James, Amy Frances January 2021 (has links)
>Magister Scientiae - MSc / Tin dioxide (SnO2) thin films are a worthy candidate for an electron transport layer (ETL) in perovskite solar cells, due to its suitable energy level, high electron mobility of 240 cm2 v-1 s- 1, desirable band gap of 3.6 - 4.0 eV, and ultimately proves to be suited for a low temperature thermal oxidation technique for ETL production. A variety of methods are available to prepare SnO2 thin films such as spin and dip coating and chemical bath deposition. However, the customary solid-state method, which incorporates thermal decomposition and oxidation of a metallic Sn precursor compound in an oxygen abundant atmosphere prevails to be low in cost, is repeatable and allows for large-scale processing.

Page generated in 0.0584 seconds