• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Cocrystal habit engineering to improve drug dissolution and alter derived powder properties

Serrano, D.R., O'Connell, P., Paluch, Krzysztof J., Walsh, D., Healy, A.M. January 2016 (has links)
No / OBJECTIVES: Cocrystallization of sulfadimidine (SDM) with suitable coformers, such as 4-aminosalicylic acid (4-ASA), combined with changes in the crystal habit can favourably alter its physicochemical properties. The aim of this work was to engineer SDM : 4-ASA cocrystals with different habits to investigate the effect on dissolution, and the derived powder properties of flow and compaction. METHODS: Cocrystals were prepared in a 1 : 1 molar ratio by solvent evaporation using ethanol (habit I) or acetone (habit II), solvent evaporation followed by grinding (habit III) and spray drying (habit IV). KEY FINDINGS: Powder X-ray diffraction showed Bragg peak position was the same in all the solid products. The peak intensity varied, indicating different preferred crystal orientation confirmed by SEM micrographs: large prismatic crystals (habit I), large plate-like crystals (habit II), small cube-like crystals (habit III) and microspheres (habit IV). The habit III exhibited the fasted dissolution rate; however, it underwent a polymorphic transition during dissolution. Habits I and IV exhibited the highest Carr's compressibility index, indicating poor flowability. However, habits II and III demonstrated improved flow. Spray drying resulted in cocrystals with improved compaction properties. CONCLUSIONS: Even for cocrystals with poor pharmaceutical characteristics, a habit can be engineered to alter the dissolution, flowability and compaction behaviour.
2

Cocrystal habit engineering to improve drug dissolution and alter derived powder properties

Serrano, D.R., O'Connell, P., Paluch, Krzysztof J., Walsh, D., Healy, A.M. 26 September 2015 (has links)
Yes / Objectives: Cocrystallization of sulfadimidine (SDM) with suitable coformers, such as 4-aminosalicylic acid (4-ASA), combined with changes in the crystal habit can favourably alter its physicochemical properties. The aim of this work was to engineer SDM:4-ASA cocrystals with different habits in order to investigate the effect on dissolution, and the derived powder properties of flow and compaction. Methods: Cocrystals were prepared in a 1:1 molar ratio by solvent evaporation using ethanol (habit I) or acetone (habit II), solvent evaporation followed by grinding (habit III) and spray-drying (habit IV). Key findings: Powder X-ray diffraction showed Bragg peak position was the same in all the solid products. The peak intensity varied, indicating different preferred crystal orientation confirmed by SEM micrographs: large prismatic crystals (habit I), large plate-like crystals (habit II), small cube-like crystals (habit III) and microspheres (habit IV). The habit III exhibited the fasted dissolution rate; however, it underwent a polymorphic transition during dissolution. Habits I and IV exhibited the highest Carr’s compressibility index, indicating poor flowability. However, habits II and III demonstrated improved flow. Spray drying resulted in cocrystals with improved compaction properties. Conclusions: Even for cocrystals with poor pharmaceutical characteristics, a habit can be engineered to alter the dissolution, flowability and compaction behavior. / Science Foundation Ireland. Grant Number: SFI/12/RC/2275

Page generated in 0.0365 seconds