• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

PROVIZ: an integrated graphical programming, visualization and scripting framework for WSNs

Kumbakonam Chandrasekar, Ramalingam 01 April 2013 (has links)
Wireless Sensor Networks (WSNs) are rapidly gaining popularity in various critical domains like health care, critical infrastructure, and climate monitoring, where application builders have diversified development needs. Independent of the functionalities provided by the WSN applications, many of the developers use visualization, simulation, and programming tools. However, these tools are designed as separate stand-alone applications, which force developers to use multiple tools. This situation often poses confusion and hampers an efficient development experience. To avoid the complexity of using multiple tools, a new, extensible, multi-platform, scalable, and open-source framework called PROVIZ is designed. PROVIZ is an integrated visualization and programming framework with the following features: PROVIZ 1) visualizes sensor nodes and WSN traffic by parsing the data received either from a packet sniffer (e.g., a sensor-based sniffer, or a commercial TI SmartRF 802.15.4 packet sniffer), or from a simulator (e.g., OMNeT); 2) visualizes a heterogeneous WSN consisting of different sensor nodes sending packets with different packet payload formats; and 3) provides a programming framework, which provides a graphical and script-based programming functionality, for developing WSN applications. Also, PROVIZ includes built-in extensible visual demo deployment capabilities that allow users to quickly craft network scenarios and share them with other users. Additionally, a secure and energy efficient wireless code dissemination protocol, named SIMAGE, was developed. SIMAGE is used by PROVIZ to wirelessly reprogram the sensor nodes. SIMAGE uses a link quality cognizant adaptive packet-sizing technique along with energy-efficient encryption protocols for secure and efficient code dissemination. In this thesis, the various features of PROVIZ's visualization and programming framework are explained, the functionality and performance of SIMAGE protocol is described, an example WSN security attack scenario is analyzed, and how PROVIZ can be used as a visual debugging tool to identify the security attack and aid in providing a software fix are discussed.
2

Secure network programming in wireless sensor networks

Tan, Hailun, Computer Science & Engineering, Faculty of Engineering, UNSW January 2010 (has links)
Network programming is one of the most important applications in Wireless Sensor Networks as It provides an efficient way to update program Images running on sensor nodes without physical access to them. Securing these updates, however, remains a challenging and important issue, given the open deployment environment of sensor nodes. Though several security schemes have been proposed to impose the authenticity and Integrity protection on network programming applications, they are either energy Inefficient as they tend to use digital signature or lacks the data confidentiality. In addition, due to the absence of secure memory management in the current sensor hardware, the attacker could inject malicious code into the program flash by exploiting buffer overflow In the memory despite the secure code dissemination. The contribution of this thesis Is to provide two software-based security protocols and one hardware-based remote attestation protocol for network programming application. Our first protocol deploys multiple one-way key chains for a multi-hop sensor network. The scheme Is shown to be lower In computational, power consumption and communication costs yet still able to secure multi??hop propagation of program images. Our second protocol utilizes an Iterative hash structure to the data packets in network programming application, ensuring the data confidentiality and authenticity. In addition, we Integrated confidentiality and DoS-attack-resistance in a multi??hop code dissemination protocol. Our final solution is a hardware-based remote attestation protocol for verification of running codes on sensor nodes. An additional piece of tamper-proof hardware, Trusted Platform Module (TPM), is imposed into the sensor nodes. It secures the sensitive information (e.g., the session key) from attackers and monitors any platform environment changes with the Internal registers. With these features of TPM, the code Injection attack could be detected and removed when the contaminated nodes are challenged in our remote attestation protocol. We implement the first two software-based protocols with Deluge as the reference network programming protocol in TinyOS, evaluate them with the extensive simulation using TOSSIM and validate the simulation results with experiments using Tmote. We implement the remote attestation protocol on Fleck, a sensor platform developed by CSIRO that Integrates an Atmel TPM chip.
3

Secure network programming in wireless sensor networks

Tan, Hailun, Computer Science & Engineering, Faculty of Engineering, UNSW January 2010 (has links)
Network programming is one of the most important applications in Wireless Sensor Networks as It provides an efficient way to update program Images running on sensor nodes without physical access to them. Securing these updates, however, remains a challenging and important issue, given the open deployment environment of sensor nodes. Though several security schemes have been proposed to impose the authenticity and Integrity protection on network programming applications, they are either energy Inefficient as they tend to use digital signature or lacks the data confidentiality. In addition, due to the absence of secure memory management in the current sensor hardware, the attacker could inject malicious code into the program flash by exploiting buffer overflow In the memory despite the secure code dissemination. The contribution of this thesis Is to provide two software-based security protocols and one hardware-based remote attestation protocol for network programming application. Our first protocol deploys multiple one-way key chains for a multi-hop sensor network. The scheme Is shown to be lower In computational, power consumption and communication costs yet still able to secure multi??hop propagation of program images. Our second protocol utilizes an Iterative hash structure to the data packets in network programming application, ensuring the data confidentiality and authenticity. In addition, we Integrated confidentiality and DoS-attack-resistance in a multi??hop code dissemination protocol. Our final solution is a hardware-based remote attestation protocol for verification of running codes on sensor nodes. An additional piece of tamper-proof hardware, Trusted Platform Module (TPM), is imposed into the sensor nodes. It secures the sensitive information (e.g., the session key) from attackers and monitors any platform environment changes with the Internal registers. With these features of TPM, the code Injection attack could be detected and removed when the contaminated nodes are challenged in our remote attestation protocol. We implement the first two software-based protocols with Deluge as the reference network programming protocol in TinyOS, evaluate them with the extensive simulation using TOSSIM and validate the simulation results with experiments using Tmote. We implement the remote attestation protocol on Fleck, a sensor platform developed by CSIRO that Integrates an Atmel TPM chip.

Page generated in 0.1277 seconds