• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Improving Code Overlay Performance by Pre-fetching in Scratch Pad Memory Systems

January 2011 (has links)
abstract: Advances in electronics technology and innovative manufacturing processes have driven the semiconductor industry towards extensive miniaturization & ever greater integration of chip design. One consequence of this sustained evolution has been the growing relative cost of accessing off-chip components with external memory being one of the dominant contributors. In embedded systems and applications, where power consumption and cost are extremely crucial factors, the use of on chip Scratch Pad Memories (SPMs) has proven to be a good alternative to caches. SPMs are more efficient than on-chip caches in a wide variety of aspects including energy consumption, power dissipation, speed performance, area, and timing predictability. However, at the same time, they entail explicit software-level management. Specifically, the system performance depends upon overlay scheme for mapping code and data onto the size-limited SPMs. It has been found that for applications with large code sizes, the overlay overhead cost becomes significant. This work aims to evaluate and implement pre-fetching as a performance improvement technique for SPMs. It is implemented in code overlay manager, provided with the Cell Broadband Engine (CBE) Synergistic Processing Unit (SPU) compiler from IBM, spu-gcc. Four different approaches proposed in this work use profiling information to predict pre-fetch calls. The pre-fetching technique achieves considerable performance improvement by hiding some of the code overlay cost behind active computations by fetching the required code segment in advance into SPM. Experimental results supporting this claim are obtained using the IBM Cell architecture platform with substantial gain of more than 30%. / Dissertation/Thesis / M.S. Computer Science 2011

Page generated in 0.0572 seconds