Spelling suggestions: "subject:"coded OFDM"" "subject:"noded OFDM""
1 |
Analysis of coded OFDM system over frequency-selective fading channelsZheng, Jun 15 November 2004 (has links)
This thesis considers the analysis of system performance and resource allocation for a coded OFDM system over frequency selective fading channels. Due to the inseparable role taken by channel coding in a coded OFDM system, an information theoretical analysis is carried out and taken as the basis for the system performance and throughput.
Based on the results of the information theoretical analysis, the optimal system BER performance of a coded OFDM system is first shown to converge to the outage probability for large OFDM block lengths. Instead of evaluating the outage probability numerically, we provide in this thesis a simple analytical closed form approximation of the outage probability for a coded OFDM system over frequency selective quasi-static fading channels. Simulation results of the turbo-coded OFDM systems further confirm the approximation of the outage probability.
By taking the instantaneous channel capacity as the analytical building block, system throughput of a coded OFDM system is then provided. With the aim to compare the performance difference between adaptive and uniform resource allocation strategies, the system throughput of different allocation schemes under various channel conditions is analyzed. First, it is demonstrated that adaptive power allocation over
OFDM sub-carriers at the transmitter achieves very little gain in terms of throughput over a uniform power distribution scheme. Theoretical analysis is then provided of the throughput increase of adaptive-rate schemes compared with fixed-rate schemes under various situations. Two practical OFDM systems implementing rate-compatible-punctured-turbo-code-based (RCPT-based) hybrid automatic-repeat-request (Hybrid-ARQ) and redundancy incremental Hybrid-ARQ protocols are also provided to verify the analytical results.
|
2 |
Interference Cancelling Detectors In OFDMA/MIMO/Cooperative CommunicationsSreedhar, Dheeraj 09 1900 (has links)
In this thesis, we focus on interference cancelling (IC) detectors for advanced communication systems. The contents of this thesis is divided into the following four parts:
1. Multiuser interference (MUI) cancellation in uplink orthogonal frequency division multiple access (OFDMA).
2. Inter-carrier interference (ICI) and inter-symbol interference (ISI) cancellation in space-frequency block coded OFDM (SFBC-OFDM).
3. Single-symbol decodability (SSD) of distributed space-time block codes (DSTBC) in partially-coherent cooperative networks with amplify-and-forward protocol at the relays
4. Interference cancellation in cooperative SFBC-OFDM networks with amplify-and-forward (AF) and decode-and-forward (DF) protocols at the relays.
In uplink OFDMA systems, MUI occurs due to different carrier frequency offsets of different users at the receiver. In the first part of the thesis, we present a weighted multistage linear parallel interference cancellation approach to mitigate the effect of this MUI in uplink OFDMA. We also present a minimum mean square error (MMSE) based approach to MUI cancellation in uplink OFDMA. We present a recursion to approach the MMSE solution and show structure-wise and performance-wise comparison with other detectors in the literature.
Use of SFBC-OFDM signals is advantageous in high-mobility broadband wireless access, where the channel is highly time- as well as frequency-selective because of which the receiver experiences both ISI as well as ICI. In the second part of the thesis, we are concerned with the detection of SFBC-OFDM signals on time- and frequency-selective MIMO channels. Specifically, we propose and evaluate the performance of an interference cancelling receiver for SFBC-OFDM, which alleviates the effects of ISI and ICI in highly time- and frequency-selective channels
The benefits of MIMO techniques can be made possible to user nodes having a single transmit antenna through cooperation among different nodes. In the third part of the thesis, we derive a new set of conditions for a distributed DSTBC to be SSD for a partially-coherent relay channel (PCRC), where the relays have only the phase information of the source-to-relay channels. We also establish several properties of SSD codes for PCRC.
In the last part of the thesis, we consider cooperative SFBC-OFDM networks with AF and DF protocols at the relays. In cooperative SFBC-OFDM networks that employ DF protocol, i) ISI occurs at the destination due to violation of the `quasi-static' assumption because of the frequency selectivity of the relay-to-destination channels, and ii) ICI occurs due to imperfect carrier synchronization between the relay nodes and the destination, both of which result in error-floors in the bit error performance at the destination. We propose an interference cancellation algorithm for this system at the destination node, and show that the proposed algorithm effectively mitigates the ISI and ICI effects.
|
Page generated in 0.0351 seconds