Spelling suggestions: "subject:"eoding data transmission"" "subject:"eoding mata transmission""
1 |
Performance and complexity of lattice codes for the Gaussian channelSheppard, J. A. January 1996 (has links)
No description available.
|
2 |
Projective Space Codes for the Injection MetricKhaleghi, Azadeh 12 February 2010 (has links)
In the context of error control in random linear network coding, it is useful to construct codes that comprise well-separated collections of subspaces of a vector space over a finite field.
This thesis concerns the construction of non-constant-dimension projective space codes for adversarial error-correction in random linear network coding. The metric used
is the so-called injection distance introduced by Silva and Kschischang, which perfectly reflects the adversarial nature of the channel.
A Gilbert-Varshamov-type bound for such codes is derived and its asymptotic behaviour is analysed. It is shown that in the limit as the ambient space dimension approaches infinity, the Gilbert-Varshamov bound on the size of non-constant-dimension codes behaves similar to the Gilbert-Varshamov bound on the size of constant-dimension codes contained within the largest Grassmannians in the projective space.
Using the code-construction framework of Etzion and Silberstein, new non-constant-dimension codes are constructed; these codes contain more codewords than comparable codes designed for the subspace metric. To our knowledge this work is the first to address
the construction of non-constant-dimension codes designed for the injection metric.
|
3 |
Projective Space Codes for the Injection MetricKhaleghi, Azadeh 12 February 2010 (has links)
In the context of error control in random linear network coding, it is useful to construct codes that comprise well-separated collections of subspaces of a vector space over a finite field.
This thesis concerns the construction of non-constant-dimension projective space codes for adversarial error-correction in random linear network coding. The metric used
is the so-called injection distance introduced by Silva and Kschischang, which perfectly reflects the adversarial nature of the channel.
A Gilbert-Varshamov-type bound for such codes is derived and its asymptotic behaviour is analysed. It is shown that in the limit as the ambient space dimension approaches infinity, the Gilbert-Varshamov bound on the size of non-constant-dimension codes behaves similar to the Gilbert-Varshamov bound on the size of constant-dimension codes contained within the largest Grassmannians in the projective space.
Using the code-construction framework of Etzion and Silberstein, new non-constant-dimension codes are constructed; these codes contain more codewords than comparable codes designed for the subspace metric. To our knowledge this work is the first to address
the construction of non-constant-dimension codes designed for the injection metric.
|
Page generated in 0.1049 seconds