• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Performance and complexity of lattice codes for the Gaussian channel

Sheppard, J. A. January 1996 (has links)
No description available.
2

Projective Space Codes for the Injection Metric

Khaleghi, Azadeh 12 February 2010 (has links)
In the context of error control in random linear network coding, it is useful to construct codes that comprise well-separated collections of subspaces of a vector space over a finite field. This thesis concerns the construction of non-constant-dimension projective space codes for adversarial error-correction in random linear network coding. The metric used is the so-called injection distance introduced by Silva and Kschischang, which perfectly reflects the adversarial nature of the channel. A Gilbert-Varshamov-type bound for such codes is derived and its asymptotic behaviour is analysed. It is shown that in the limit as the ambient space dimension approaches infinity, the Gilbert-Varshamov bound on the size of non-constant-dimension codes behaves similar to the Gilbert-Varshamov bound on the size of constant-dimension codes contained within the largest Grassmannians in the projective space. Using the code-construction framework of Etzion and Silberstein, new non-constant-dimension codes are constructed; these codes contain more codewords than comparable codes designed for the subspace metric. To our knowledge this work is the first to address the construction of non-constant-dimension codes designed for the injection metric.
3

Projective Space Codes for the Injection Metric

Khaleghi, Azadeh 12 February 2010 (has links)
In the context of error control in random linear network coding, it is useful to construct codes that comprise well-separated collections of subspaces of a vector space over a finite field. This thesis concerns the construction of non-constant-dimension projective space codes for adversarial error-correction in random linear network coding. The metric used is the so-called injection distance introduced by Silva and Kschischang, which perfectly reflects the adversarial nature of the channel. A Gilbert-Varshamov-type bound for such codes is derived and its asymptotic behaviour is analysed. It is shown that in the limit as the ambient space dimension approaches infinity, the Gilbert-Varshamov bound on the size of non-constant-dimension codes behaves similar to the Gilbert-Varshamov bound on the size of constant-dimension codes contained within the largest Grassmannians in the projective space. Using the code-construction framework of Etzion and Silberstein, new non-constant-dimension codes are constructed; these codes contain more codewords than comparable codes designed for the subspace metric. To our knowledge this work is the first to address the construction of non-constant-dimension codes designed for the injection metric.

Page generated in 0.1416 seconds