• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 1
  • 1
  • Tagged with
  • 17
  • 17
  • 17
  • 8
  • 6
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

EDGE COMPUTING APPROACH TO INDOOR TEMPERATURE PREDICTION USING MACHINE LEARNING

Hyemin Kim (11565625) 22 November 2021 (has links)
<p>This paper aims to present a novel approach to real-time indoor temperature forecasting to meet energy consumption constraints in buildings, utilizing computing resources available at the edge of a network, close to data sources. This work was inspired by the irreversible effects of global warming accelerated by greenhouse gas emissions from burning fossil fuels. As much as human activities have heavy impacts on global energy use, it is of utmost importance to reduce the amount of energy consumed in every possible scenario where humans are involved. According to the US Environmental Protection Agency (EPA), one of the biggest greenhouse gas sources is commercial and residential buildings, which took up 13 percent of 2019 greenhouse gas emissions in the United States. In this context, it is assumed that information of the building environment such as indoor temperature and indoor humidity, and predictions based on the information can contribute to more accurate and efficient regulation of indoor heating and cooling systems. When it comes to indoor temperature, distributed IoT devices in buildings can enable more accurate temperature forecasting and eventually help to build administrators in regulating the temperature in an energy-efficient way, but without damaging the indoor environment quality. While the IoT technology shows potential as a complement to HVAC control systems, the majority of existing IoT systems integrate a remote cloud to transfer and process all data from IoT sensors. Instead, the proposed IoT system incorporates the concept of edge computing by utilizing small computer power in close proximity to sensors where the data are generated, to overcome problems of the traditional cloud-centric IoT architecture. In addition, as the microcontroller at the edge supports computing, the machine learning-based prediction of indoor temperature is performed on the microcomputer and transferred to the cloud for further processing. The machine learning algorithm used for prediction, ANN (Artificial Neural Network) is evaluated based on error metrics and compared with simple prediction models.</p>
12

FROM THE SCAMMER PERSPECTIVE: PREDISPOSITIONS TOWARDS ONLINE FRAUD MOTIVATION AND RATIONALIZATION

Subia Ansari (9175607) 29 July 2020 (has links)
<p>Cybercrime and online scams are rampant in today’s tech-savvy world. In the past, scammers relied heavily on emails to contact potential victims but today, the presence and widespread usage of social networking platforms and e-commerce businesses has increased the availability of potential victims and made them easily accessible. It could be assumed that since unsuspecting users seek various products or services online - rentals, booking trips, seeking jobs, dating, it makes them easy targets for scammers yet, it is not just individual users who suffer from fraud, but organizations and institutions as well. A study at the Bank of America Merrill Lynch Global Research found that cybercrime costs the global economy up to approximately 540 billion euros annually. There is plenty of research on the technical measures that individuals and organizations may take to prevent themselves from falling prey to fraudsters, however, research trends in the recent past have shifted towards analyzing the human element present in the scenarios. Researchers have argued that identifying the underlying psychological and sociological factors used by fraudsters could help tackle the very root cause of such fraudulent attacks. While there exists some research focusing on the experiences and psychology of victims of these attacks as well as the countermeasures that can be taken to protect them from such attacks, there is little research on the psychology and motivation of those who commit online fraud. This study aims to identify the psychological factors that affect the predilection of scammers to commit online fraud.</p>
13

On Non-Convex Splitting Methods For Markovian Information Theoretic Representation Learning

Teng Hui Huang (12463926) 27 April 2022 (has links)
<p>In this work, we study a class of Markovian information theoretic optimization problems motivated by the recent interests in incorporating mutual information as performance metrics which gives evident success in representation learning, feature extraction and clustering problems. In particular, we focus on the information bottleneck (IB) and privacy funnel (PF) methods and their recent multi-view, multi-source generalizations that gain attention because the performance significantly improved with multi-view, multi-source data. Nonetheless, the generalized problems challenge existing IB and PF solves in terms of the complexity and their abilities to tackle large-scale data. </p> <p>To address this, we study both the IB and PF under a unified framework and propose solving it through splitting methods, including renowned algorithms such as alternating directional method of multiplier (ADMM), Peaceman-Rachford splitting (PRS) and Douglas-Rachford splitting (DRS) as special cases. Our convergence analysis and the locally linear rate of convergence results give rise to new splitting method based IB and PF solvers that can be easily generalized to multi-view IB, multi-source PF. We implement the proposed methods with gradient descent and empirically evaluate the new solvers in both synthetic and real-world datasets. Our numerical results demonstrate improved performance over the state-of-the-art approach with significant reduction in complexity. Furthermore, we consider the practical scenario where there is distribution mismatch between training and testing data generating processes under a known bounded divergence constraint. In analyzing the generalization error, we develop new techniques inspired by the input-output mutual information approach and tighten the existing generalization error bounds.</p>
14

A Fine-Grain Scalable and Channel-Adaptive Hybrid Speech Coding Scheme for Voice over Wireless IP / Improvements Through Multiple Description Coding / Ein feingradig skalierbares und kanaladaptives hybrides Sprachkodierungsverfahren für Voice over Wireless IP / Verbesserungen durch Multiple Description Coding

Zibull, Marco 30 October 2006 (has links)
No description available.
15

Network Utility Maximization Based on Information Freshness

Cho-Hsin Tsai (12225227) 20 April 2022 (has links)
<p>It is predicted that there would be 41.6 billion IoT devices by 2025, which has kindled new interests on the timing coordination between sensors and controllers, i.e., how to use the waiting time to improve the performance. Sun et al. showed that a <i>controller</i> can strictly improve the data freshness, the so-called Age-of-Information (AoI), via careful scheduling designs. The optimal waiting policy for the <i>sensor</i> side was later characterized in the context of remote estimation. The first part of this work develops the jointly optimal sensor/controller waiting policy. It generalizes the above two important results in that not only do we consider joint sensor/controller designs, but we also assume random delay in both the forward and feedback directions. </p> <p> </p> <p>The second part of the work revisits and significantly strengthens the seminal results of Sun et al on the following fronts: (i) When designing the optimal offline schemes with full knowledge of the delay distributions, a new <i>fixed-point-based</i> method is proposed with <i>quadratic convergence rate</i>; (ii) When the distributional knowledge is unavailable, two new low-complexity online algorithms are proposed, which provably attain the optimal average AoI penalty; and (iii) the online schemes also admit a modular architecture, which allows the designer to <i>upgrade</i> certain components to handle additional practical challenges. Two such upgrades are proposed: (iii.1) the AoI penalty function incurred at the destination is unknown to the source node and must also be estimated on the fly, and (iii.2) the unknown delay distribution is Markovian instead of i.i.d. </p> <p> </p> <p>With the exponential growth of interconnected IoT devices and the increasing risk of excessive resource consumption in mind, the third part of this work derives an optimal joint cost-and-AoI minimization solution for multiple coexisting source-destination (S-D) pairs. The results admit a new <i>AoI-market-price</i>-based interpretation and are applicable to the setting of (i) general heterogeneous AoI penalty functions and Markov delay distributions for each S-D pair, and (ii) a general network cost function of aggregate throughput of all S-D pairs. </p> <p> </p> <p>In each part of this work, extensive simulation is used to demonstrate the superior performance of the proposed schemes. The discussion on analytical as well as numerical results sheds some light on designing practical network utility maximization protocols.</p>
16

Information Processing in Neural Networks: Learning of Structural Connectivity and Dynamics of Functional Activation

Finger, Holger Ewald 16 March 2017 (has links)
Adaptability and flexibility are some of the most important human characteristics. Learning based on new experiences enables adaptation by changing the structural connectivity of the brain through plasticity mechanisms. But the human brain can also adapt to new tasks and situations in a matter of milliseconds by dynamic coordination of functional activation. To understand how this flexibility can be achieved in the computations performed by neural networks, we have to understand how the relatively fixed structural backbone interacts with the functional dynamics. In this thesis, I will analyze these interactions between the structural network connectivity and functional activations and their dynamic interactions on different levels of abstraction and spatial and temporal scales. One of the big questions in neuroscience is how functional interactions in the brain can adapt instantly to different tasks while the brain structure remains almost static. To improve our knowledge of the neural mechanisms involved, I will first analyze how dynamics in functional brain activations can be simulated based on the structural brain connectivity obtained with diffusion tensor imaging. In particular, I will show that a dynamic model of functional connectivity in the human cortex is more predictive of empirically measured functional connectivity than a stationary model of functional dynamics. More specifically, the simulations of a coupled oscillator model predict 54\% of the variance in the empirically measured EEG functional connectivity. Hypotheses of temporal coding have been proposed for the computational role of these dynamic oscillatory interactions on fast timescales. These oscillatory interactions play a role in the dynamic coordination between brain areas as well as between cortical columns or individual cells. Here I will extend neural network models, which learn unsupervised from statistics of natural stimuli, with phase variables that allow temporal coding in distributed representations. The analysis shows that synchronization of these phase variables provides a useful mechanism for binding of activated neurons, contextual coding, and figure ground segregation. Importantly, these results could also provide new insights for improvements of deep learning methods for machine learning tasks. The dynamic coordination in neural networks has also large influences on behavior and cognition. In a behavioral experiment, we analyzed multisensory integration between a native and an augmented sense. The participants were blindfolded and had to estimate their rotation angle based on their native vestibular input and the augmented information. Our results show that subjects alternate in the use between these modalities, indicating that subjects dynamically coordinate the information transfer of the involved brain regions. Dynamic coordination is also highly relevant for the consolidation and retrieval of associative memories. In this regard, I investigated the beneficial effects of sleep for memory consolidation in an electroencephalography (EEG) study. Importantly, the results demonstrate that sleep leads to reduced event-related theta and gamma power in the cortical EEG during the retrieval of associative memories, which could indicate the consolidation of information from hippocampal to neocortical networks. This highlights that cognitive flexibility comprises both dynamic organization on fast timescales and structural changes on slow timescales. Overall, the computational and empirical experiments demonstrate how the brain evolved to a system that can flexibly adapt to any situation in a matter of milliseconds. This flexibility in information processing is enabled by an effective interplay between the structure of the neural network, the functional activations, and the dynamic interactions on fast time scales.
17

3D OBJECT DETECTION USING VIRTUAL ENVIRONMENT ASSISTED DEEP NETWORK TRAINING

Ashley S Dale (8771429) 07 January 2021 (has links)
<div> <div> <div> <p>An RGBZ synthetic dataset consisting of five object classes in a variety of virtual environments and orientations was combined with a small sample of real-world image data and used to train the Mask R-CNN (MR-CNN) architecture in a variety of configurations. When the MR-CNN architecture was initialized with MS COCO weights and the heads were trained with a mix of synthetic data and real world data, F1 scores improved in four of the five classes: The average maximum F1-score of all classes and all epochs for the networks trained with synthetic data is F1∗ = 0.91, compared to F1 = 0.89 for the networks trained exclusively with real data, and the standard deviation of the maximum mean F1-score for synthetically trained networks is σ∗ <sub>F1 </sub>= 0.015, compared to σF 1 = 0.020 for the networks trained exclusively with real data. Various backgrounds in synthetic data were shown to have negligible impact on F1 scores, opening the door to abstract backgrounds and minimizing the need for intensive synthetic data fabrication. When the MR-CNN architecture was initialized with MS COCO weights and depth data was included in the training data, the net- work was shown to rely heavily on the initial convolutional input to feed features into the network, the image depth channel was shown to influence mask generation, and the image color channels were shown to influence object classification. A set of latent variables for a subset of the synthetic datatset was generated with a Variational Autoencoder then analyzed using Principle Component Analysis and Uniform Manifold Projection and Approximation (UMAP). The UMAP analysis showed no meaningful distinction between real-world and synthetic data, and a small bias towards clustering based on image background. </p></div></div></div>

Page generated in 0.1076 seconds