• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • 1
  • Tagged with
  • 6
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Cofiring of coal and dairy biomass in a 100,000 btu/hr furnace

Lawrence, Benjamin Daniel 15 May 2009 (has links)
Dairy biomass (DB) is evaluated as a possible co-firing fuel with coal. Cofiring of DB offers a technique of utilizing dairy manure for power/steam generation, reducing greenhouse gas concerns, and increasing financial returns to dairy operators. The effects of cofiring coal and DB have been studied in a 30 kW (100,000 BTU/hr) burner boiler facility. Experiments were performed with Texas Lignite coal (TXL) as a base line fuel. The combustion efficiency from co-firing is also addressed in the present work. Two forms of partially composted DB fuels were investigated: low ash separated solids and high ash soil surface. Two types of coal were investigated: TXL and Wyoming Powder River Basin coal (WYO). Proximate and ultimate analyses were performed on coal and DB. DB fuels have much higher nitrogen (kg/GJ) and ash content (kg/GJ) than coal. The HHV of TXL and WYO coal as received were 14,000 and 18,000 kJ/kg, while the HHV of the LA-PC-DBSepS and the HA-PC-DB-SoilS were 13,000 and 4,000 kJ/kg. The HHV based on stoichiometric air were 3,000 kJ/kg for both coals and LA-PC-DB-SepS and 2,900 kJ/kg for HA-PC-DB-SoilS. The nitrogen and sulfur loading for TXL and WYO ranged from 0.15 to 0.48 kg/GJ and from 0.33 to 2.67 for the DB fuels. TXL began pyrolysis at 640 K and the WYO at 660 K. The HA-PC-DB-SoilSs began pyrolysis at 530 K and the LA-PC-DB-SepS at 510 K. The maximum rate of volatile release occurred at 700 K for both coals and HA-PC-DB-SoilS and 750K for LA-PC-DB-SepS. The NOx emissions for equivalence ratio (φ) varying from 0.9 to 1.2 ranged from 0.34 to 0.90 kg/GJ (0.79 to 0.16 lb/mmBTU) for pure TXL. They ranged from 0.35 to 0.7 kg/GJ (0.82 to 0.16 lb/mmBTU) for a 90:10 TXL:LA-PC-DB-SepS blend and from 0.32 to 0.5 kg/GJ (0.74 to 0.12 lb/mmBTU) for a 80:20 TXL:LA-PC-DB-SepS blend over the same range of φ. In a rich environment, DB:coal cofiring produced less NOx and CO than pure coal. This result is probably due to the fuel bound nitrogen in DB is mostly in the form of urea which reduces NOx to non-polluting gases such as nitrogen (N2).
2

Investigation Of Synergistic NOx Reduction From Cofiring And Air Staged Combustion Of Coal And Low Ash Dairy Biomass In A 30 Kilowatt Low NOx Furnace

Lawrence, Benjamin Daniel 16 December 2013 (has links)
Alternate, cost effective disposal methods must be developed for reducing phosphorous and nitrogen loading from land application of animal waste. Cofiring coal with animal waste, termed dairy biomass (DB), is the proposed thermo-chemical method to address this concern. DB is evaluated as a cofired fuel with Wyoming Powder River Basin (PRB) sub-bituminous coal in a small-scale 29 kW_(t) low NO_(x) burner (LNB) facility. Fuel properties, of PRB and DB revealed the following: a higher heating value of 29590 kJ/kg for dry ash free (DAF) coal and 21450 kJ/kg for DAF DB. A new method called Respiratory Quotient (RQ), defined as ratio of carbon dioxide moles to oxygen moles consumed in combustion, used widely in biology, was recently introduced to engineering literature to rank global warming potential (GWP) of fuels. A higher RQ means higher CO_(2) emission and higher GWP. PRB had an RQ of 0.90 and DB had an RQ of 0.92. For comparison purposes, methane has an RQ of 0.50. For unknown fuel composition, gas analyses can be adapted to estimate RQ values. The LNB was modified and cofiring experiments were performed at various equivalence ratios (phi) with pure coal and blends of PRB-DB. Standard emissions from solid fuel combustion were measured; then NO_(x) on a heat basis (g/GJ), fuel burnt fraction, and fuel nitrogen conversion percentage were estimated. The gas analyses yielded burnt fraction ranging from 89% to 100% and confirmed an RQ of 0.90 to 0.94, which is almost the same as the RQ based on fuel composition. At the 0.90 equivalence ratio, unstaged pure coal produced 653 ppm (377 g/GJ) of NOx. At the same equivalence ratio, a 90-10 PRB:LADB blended fuel produced 687 ppm (397 g/GJ) of NO_(x). By staging 20% of the total combustion air as tertiary air (which raised the equivalence ratio of the main burner to 1.12), NO_(x) was reduced to 545 ppm (304 g/GJ) for the 90-10 blended fuel. Analysis of variance showed that variances were statistically significant because of real differences between the independent variables (equivalence ratio, percent LADB in the fuel, and staging intensity).
3

Utilização de lodos de estações de tratamento de água como fonte alternativa de energia

Moraes, Beatriz Stoll January 2018 (has links)
O lodo é o principal resíduo sólido gerado no processo de Tratamento de Água para Abastecimento público (ETA). São considerados Resíduos Sólidos Não Perigosos e Não Inertes (Classe IIA) pela ABNT 10.004/2004, devendo ser tratados e dispostos em locais legalmente apropriados. Na maioria dos municípios brasileiros, estes lodos são despejados sem nenhuma forma de tratamento, contribuindo com a degradação da qualidade dos mananciais. O lodo é constituído de materiais inorgânicos como siltes e sílicas, matéria orgânica degradável, com presença de microorganismos patógenos e metais, oriundos do próprio manancial de captação ou do coagulante utilizado durante o processo de coagulação. O objetivo principal deste trabalho foi verificar a possibilidade da utilização dos lodos das ETA como Fonte Alternativa de Energia, comparando os lodos gerados com Sulfato de Alumínio (SA), Polialumínio Cloreto (PAC) e Tanino (T) extraído de casca de Acacia mearsii de Wild. A metodologia utilizada contou com as seguintes análises físicas e químicas: Estereomicroscopia, Microscopia Eletrônica de Varredura (MEV), Difração de Raio X (DRX), Perda ao Fogo (PF) e Poder Calorífico Superior (PCS) e Inferior (PCI). Valores simulados de economia com a utilização dos lodos como fonte alternativa também foram levados em consideração. Os lodos ao SA e ao PAC foram coletados diretamente na planta da ETA São Gabriel Saneamento, localizada no Município de São Gabriel/RS e, o lodo ao Tanino foi gerado no Laboratório de Recursos Hídricos e Saneamento Ambiental, na Universidade Federal do Pampa, campus São Gabriel. Os resultados apontaram que o lodo ao tanino apresentou uma quantidade maior de matéria orgânica, com perda ao fogo de 40,5%, maior teor de carbono (15%), hidrogênio de 2,44% e um poder calorífico de 4.347,30kJ.kg-1, podendo ser utilizado como biossólido, na reconstituição de áreas degradadas e como fonte de energia. Já o lodo ao SA, apresentou uma perda ao fogo de 23,2%, carbono de 5%, hidrogênio de 2,3%, um poder calorífico baixo de 1.384,40 kJ.kg-1, enquanto que o lodo ao PAC apresentou uma perda ao fogo de 30,0%, carbono de 6,41%, hidrogênio de 2,05%, um poder calorífico baixo de 2.746,50kJ.kg-1, ficando entre ao SA e ao Tanino. A diminuição na conta de energia elétrica da estação estudada resultou em 3,22% para lodo ao PAC e 4,67% para lodo ao Tanino, correspondendo a uma economia anual com transporte para descarte e com geração de energia elétrica de US$9.590,44 para o PAC e US$10.615,38 para o Tanino. A fim de potencializar estes resultados foram acrescentadas porcentagens diferentes de casca de arroz (CA), técnica esta chamada de cofiring. Para as misturas obteve-se uma economia de consumo de energia elétrica de 6,32% (PAC+15%CA) e 8,39% (PAC+25%), correspondendo aos valores de US$13.839,77 e US$16.795,41 respectivamente. Os resultados mostraram que lodos de ETA possuem potencial de geração de energia, podendo ser aplicada dentro das próprias instalações de processo tornando-as mais sustentáveis em termos energéticos. / Sludge is the main solid waste generated in a Water Treatment Plant (WTP). Non- Hazardous and Non-Inert Solid Waste (Class IIA) by ABNT 10,004/2004 (Brazilian Regulation) is considered as being treated and disposed of in legally appropriate places. In most Brazilian municipalities, these sludges are dumped without any form of treatment, contributing to the degradation of the quality of the springs. The sludge is composed of inorganic materials such as silt and silica, degradable organic matter, with the presence of pathogenic microorganisms and metals, originating from the source of collection or the coagulant used during the coagulation process. The main objective of this work was to verify the possibility of using WTP sludge as an Alternative Energy Source, comparing sludge generated with Aluminum Sulphate (SA), Polyaluminium Chloride (PAC) and Tannin (T) extracted from Acacia mearsii of Wild. The methodology used included the following physical and chemical analyzes: Stereomicroscopy, Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), Fire Loss (PF) and Upper Calorific Power (PCS) and Inferior (PCI). Simulated values of economy with the use of sludge as an alternative source were also taken into account. The sludge from the SA and PAC was sampled directly from the São Gabriel Saneamento WTP, located in the São Gabriel City (Southern Brazil), and the sludge from Taninn was generated at the Laboratory of Water Resources and Environmental Sanitation at the Universidade Federal do Pampa, Campus São Gabriel. The results showed that the sludge to the tannin presented a higher amount of organic matter, with a loss of 40.5%, a higher carbon content (15%), a hydrogen of 2.44% and a calorific value of 4 347.30 kJ. kg-1, which can be used as biosolids, in the reconstitution of degraded areas and as an energy source. The sludge to aluminum sulphate (SA) presented a fire loss of 23.2%, carbon of 5%, hydrogen of 2.3%, a low calorific value of 1,384.40 kJ.kg-1, while the sludge to Polyaluminium Chloride (PAC) presented a fire loss of 30.0%, carbon of 6.41%, hydrogen of 2.05%, a low calorific value of 2,746.50 kJ.kg-1, being between SA and Tannin. The decrease in the electricity bill of the station studied resulted in 3.22% for sludge to PAC and 4.67% for sludge to Taninn, corresponding to an annual economy with transportation for disposal and with electric power generation of US$9,590.44 for the PAC and US$10,615.38 for Tannin. In order to potentiate these results were added different percentages of rice husk (CA), a technique called cofiring. For the mixtures, electricity consumption was 6.32% (PAC + 15% CA) and 8.39% (PAC + 25%), corresponding to the amounts of US$13,839.77 and US$16,795.41 respectively. Results showed that WTPA sludge has potential for energy generation, and can be applied within the process facilities themselves becoming more sustainable in terms of energy.
4

Utilização de lodos de estações de tratamento de água como fonte alternativa de energia

Moraes, Beatriz Stoll January 2018 (has links)
O lodo é o principal resíduo sólido gerado no processo de Tratamento de Água para Abastecimento público (ETA). São considerados Resíduos Sólidos Não Perigosos e Não Inertes (Classe IIA) pela ABNT 10.004/2004, devendo ser tratados e dispostos em locais legalmente apropriados. Na maioria dos municípios brasileiros, estes lodos são despejados sem nenhuma forma de tratamento, contribuindo com a degradação da qualidade dos mananciais. O lodo é constituído de materiais inorgânicos como siltes e sílicas, matéria orgânica degradável, com presença de microorganismos patógenos e metais, oriundos do próprio manancial de captação ou do coagulante utilizado durante o processo de coagulação. O objetivo principal deste trabalho foi verificar a possibilidade da utilização dos lodos das ETA como Fonte Alternativa de Energia, comparando os lodos gerados com Sulfato de Alumínio (SA), Polialumínio Cloreto (PAC) e Tanino (T) extraído de casca de Acacia mearsii de Wild. A metodologia utilizada contou com as seguintes análises físicas e químicas: Estereomicroscopia, Microscopia Eletrônica de Varredura (MEV), Difração de Raio X (DRX), Perda ao Fogo (PF) e Poder Calorífico Superior (PCS) e Inferior (PCI). Valores simulados de economia com a utilização dos lodos como fonte alternativa também foram levados em consideração. Os lodos ao SA e ao PAC foram coletados diretamente na planta da ETA São Gabriel Saneamento, localizada no Município de São Gabriel/RS e, o lodo ao Tanino foi gerado no Laboratório de Recursos Hídricos e Saneamento Ambiental, na Universidade Federal do Pampa, campus São Gabriel. Os resultados apontaram que o lodo ao tanino apresentou uma quantidade maior de matéria orgânica, com perda ao fogo de 40,5%, maior teor de carbono (15%), hidrogênio de 2,44% e um poder calorífico de 4.347,30kJ.kg-1, podendo ser utilizado como biossólido, na reconstituição de áreas degradadas e como fonte de energia. Já o lodo ao SA, apresentou uma perda ao fogo de 23,2%, carbono de 5%, hidrogênio de 2,3%, um poder calorífico baixo de 1.384,40 kJ.kg-1, enquanto que o lodo ao PAC apresentou uma perda ao fogo de 30,0%, carbono de 6,41%, hidrogênio de 2,05%, um poder calorífico baixo de 2.746,50kJ.kg-1, ficando entre ao SA e ao Tanino. A diminuição na conta de energia elétrica da estação estudada resultou em 3,22% para lodo ao PAC e 4,67% para lodo ao Tanino, correspondendo a uma economia anual com transporte para descarte e com geração de energia elétrica de US$9.590,44 para o PAC e US$10.615,38 para o Tanino. A fim de potencializar estes resultados foram acrescentadas porcentagens diferentes de casca de arroz (CA), técnica esta chamada de cofiring. Para as misturas obteve-se uma economia de consumo de energia elétrica de 6,32% (PAC+15%CA) e 8,39% (PAC+25%), correspondendo aos valores de US$13.839,77 e US$16.795,41 respectivamente. Os resultados mostraram que lodos de ETA possuem potencial de geração de energia, podendo ser aplicada dentro das próprias instalações de processo tornando-as mais sustentáveis em termos energéticos. / Sludge is the main solid waste generated in a Water Treatment Plant (WTP). Non- Hazardous and Non-Inert Solid Waste (Class IIA) by ABNT 10,004/2004 (Brazilian Regulation) is considered as being treated and disposed of in legally appropriate places. In most Brazilian municipalities, these sludges are dumped without any form of treatment, contributing to the degradation of the quality of the springs. The sludge is composed of inorganic materials such as silt and silica, degradable organic matter, with the presence of pathogenic microorganisms and metals, originating from the source of collection or the coagulant used during the coagulation process. The main objective of this work was to verify the possibility of using WTP sludge as an Alternative Energy Source, comparing sludge generated with Aluminum Sulphate (SA), Polyaluminium Chloride (PAC) and Tannin (T) extracted from Acacia mearsii of Wild. The methodology used included the following physical and chemical analyzes: Stereomicroscopy, Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), Fire Loss (PF) and Upper Calorific Power (PCS) and Inferior (PCI). Simulated values of economy with the use of sludge as an alternative source were also taken into account. The sludge from the SA and PAC was sampled directly from the São Gabriel Saneamento WTP, located in the São Gabriel City (Southern Brazil), and the sludge from Taninn was generated at the Laboratory of Water Resources and Environmental Sanitation at the Universidade Federal do Pampa, Campus São Gabriel. The results showed that the sludge to the tannin presented a higher amount of organic matter, with a loss of 40.5%, a higher carbon content (15%), a hydrogen of 2.44% and a calorific value of 4 347.30 kJ. kg-1, which can be used as biosolids, in the reconstitution of degraded areas and as an energy source. The sludge to aluminum sulphate (SA) presented a fire loss of 23.2%, carbon of 5%, hydrogen of 2.3%, a low calorific value of 1,384.40 kJ.kg-1, while the sludge to Polyaluminium Chloride (PAC) presented a fire loss of 30.0%, carbon of 6.41%, hydrogen of 2.05%, a low calorific value of 2,746.50 kJ.kg-1, being between SA and Tannin. The decrease in the electricity bill of the station studied resulted in 3.22% for sludge to PAC and 4.67% for sludge to Taninn, corresponding to an annual economy with transportation for disposal and with electric power generation of US$9,590.44 for the PAC and US$10,615.38 for Tannin. In order to potentiate these results were added different percentages of rice husk (CA), a technique called cofiring. For the mixtures, electricity consumption was 6.32% (PAC + 15% CA) and 8.39% (PAC + 25%), corresponding to the amounts of US$13,839.77 and US$16,795.41 respectively. Results showed that WTPA sludge has potential for energy generation, and can be applied within the process facilities themselves becoming more sustainable in terms of energy.
5

Structure and Nitrogen Chemistry in Coal, Biomass, and Cofiring Low-NOx Flames

Damstedt, Bradley David 15 March 2007 (has links) (PDF)
Addressing global climate change will require increasing sustainable energy usage. Cofiring biomass fuels with coal for electrical power generation is an efficient, cost effective method of CO2 mitigation. This work is an experimental investigation of the flame structure and nitrogen chemistry differences occurring between coal, biomass and cofiring flames. A pilot-scale facility was fired with a dual-feed low-NOx burner capable of independently conveying 2 separate fuels unblended to the burner. Spatially detailed gas species measurements were made for 8 flames, including a coal, straw, finely ground straw, wood, and 4 straw/coal cofiring flames. Particle samples were also obtained from 5 of the flames. Intermittent flamelets were frequently observed in the flames. Viewing the substructure of the flame as individual flamelets provides critical insight for the interpretation of the data. The biomass and cofiring flames show larger flame volumes due to increased primary momentum, increased volatile yields, and differences in fuel particle characteristics (size and shape). The straw and cofiring flames also include secondary flame structures. The secondary flames result from delayed reaction of the straw “knees" due to differences in fuel characteristics. Biomass fuel-N was shown to evolve primarily through NH3, while the coal showed roughly equal amounts of NH3 and HCN. Due to increases in the flame volume and greater NH3 release within these larger fuel-rich regions, as well as lower fuel-N content, effluent concentrations of NO for the biomass and cofiring flames are lower than the coal flame. In-flame reduction of NO corresponds spatially to the presence of NH3, suggesting advanced reburning. Lower fuel-N contents are thought to increase the overall NO production efficiency, but this effect is uncertain for this work due to differences in flame structure and fuel-N chemistry. A mixing model based on intermittent flamelet behavior is included. The model uses dual-delta functions (DDF) to represent lean and rich eddies passing through a sampling volume. Both the beta-pdf and the DDF model were fit to data obtained in this study and compared. The beta-pdf model was unable to capture intermittent behavior. The DDF model was able to represent intermittent behavior, but produced physically unrealistic results.
6

Estudo da coqueima de carvão mineral brasileiro e biomassa utilizando leito fluidizado borbulhante em escala de bancada

Bianchi, Flavio Michels 21 March 2018 (has links)
Submitted by JOSIANE SANTOS DE OLIVEIRA (josianeso) on 2018-07-06T16:41:24Z No. of bitstreams: 1 Flavio Michels Bianchi_.pdf: 5656297 bytes, checksum: babcb37759c827b4912894a5e8a91ccd (MD5) / Made available in DSpace on 2018-07-06T16:41:24Z (GMT). No. of bitstreams: 1 Flavio Michels Bianchi_.pdf: 5656297 bytes, checksum: babcb37759c827b4912894a5e8a91ccd (MD5) Previous issue date: 2018-03-21 / Nenhuma / Baseado na tecnologia de leito fluidizado borbulhante, um combustor em escala de bancada foi utilizado para conduzir trabalho de pesquisa em coqueima de misturas de carvão mineral e biomassa (serragem). O carvão mineral presente no sul do Brasil é na sua maioria do tipo sub-betuminoso e é beneficiado para alcançar requisitos típicos das usinas termelétricas localizadas no sul do Brasil. Tem aproximadamente 40% de cinzas e uma substancial quantidade de enxofre (aproximadamente 2%). A umidade é um componente comum nas biomassas e que pode dificultar a combustão da biomassa pura exigindo ajustes operacionais. Além disso, o percentual de umidade normalmente sugere poderes caloríficos menores quando comparados com o carvão. Verificando algumas características destes combustíveis a queima combinada aparece como possibilidade de minimizar problemas associados a queima singular destes combustíveis. A proposta deste trabalho foi de determinar a melhor proporção de mistura para a operação de coqueima, misturando carvão mineral e biomassa de madeira em um combustor de leito fluidizado borbulhante em escala de bancada. Resultados experimentais sugerem que misturas de combustível contendo até 10% de biomassa oferecem melhores resultados em termos de emissões e controle da estabilidade das temperaturas. Também foi pretendido avaliar o impacto das emissões nos gases de exaustão quando comparado com a queima simples de carvão mineral em leito fluidizado borbulhante. O estudo apresentou boa eficiência de combustão para os casos considerados, incluindo baixas emissões de CO e alcatrões. As emissões de SO2 não foram afetadas pela presença da biomassa. Ademais, o regime de fluidização de 6 umf e o excesso de ar de 70% foram estimados como mais assertivos para a operação baseados no desempenho e temperatura dos gases de exaustão. / Based on bubbling fluidized bed technology, a bench scale combustor was used to conduct research works in co-firing of coal and biomass (wood shavings) blends. South Brazilian subbituminous coal, beneficiated to achieve typical thermal power plant requirements located in south Brazil. Still have about 40% of ash content and a substantial amount of sulfur (around 2%). Related to some processes including an environmentally friendly concept of combustion, but not giving up the reliability of coal in terms of supply and storage, a co-firing of coal together with biomass agrees with these interests. Biomass wood shavings in the south of Brazil are cheap, easy to find and an obviously renewable source of energetic fuel. Nevertheless, this kind of biomass is rich in moisture. The moisture is a usual component of biomasses, which may hinders the combustion of biomass alone requiring operational adjustments. Furthermore, the percentage of moisture normally suggests lower heating values when compared to coal. Characteristics of these fuels indicate that cofiring can minimize problems associated with the single burning of these fuels. The purpose of this work was to determine the best blend proportion of operation for co-firing, mixing coal and wood shavings in a bubbling fluidized bed bench scale combustor. Experimental results suggest that fuel blends containing up to 10% biomass provide better results in terms of emissions and temperature control. It was also intended to evaluate the impact on flue gas emissions when compared with just coal burning in a bubbling fluidized bed. The study presented good combustion efficiency for the considered cases, including low emissions of CO and tars. SO2 emissions were not affected by the presence of biomass. In addition, the fluidization regime of 6 umf and the excess air of 70% were estimated as more assertive for the operation based on the performance and temperature of the exhaust gases.

Page generated in 0.0649 seconds