• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Rees algebras and fiber cones of modules

Alessandra Costantini (7042793) 13 August 2019 (has links)
<div>In the first part of this thesis, we study Rees algebras of modules. We investigate their Cohen-Macaulay property and their defining ideal, using <i>generic Bourbaki ideals</i>. These were introduced by Simis, Ulrich and Vasconcelos in [65], in order to characterize the Cohen-Macaulayness of Rees algebras of modules. Thanks to this technique, the problem is reduced to the case of Rees algebras of ideals. Our main results are the following.</div><div><br></div><div><div>In Chapters 3 and 4 we consider a finite module <i>E</i> over a Gorenstein local ring <i>R</i>. In Theorem 3.2.4 and Theorem 4.3.2, we give sufficient conditions for <i>E</i> to be of linear type, while Theorem 4.2.4 provides a sufficient condition for the Rees algebra <i>R(E)</i> of <i>E</i> to be Cohen-Macaulay. These results rely on properties of the residual intersections of a generic Bourbaki ideal <i>I</i> of<i> E</i>, and generalize previous work of Lin (see [46, 3.1 and 3.4]). In the case when <i>E</i> is an ideal, Theorem 4.2.4 had been previously proved independently by Johnson and Ulrich (see [39, 3.1]) and Goto, Nakamura and Nishida (see [20, 1.1 and 6.3]).</div></div><div><br></div><div><div>In Chapter 5, we consider a finite module <i>E</i> of projective dimension one over <i>k</i>[X<sub>1</sub>, . . . , X<sub>n</sub>]. Our main result, Theorem 5.2.6, describes the defining ideal of <i>R(E)</i>, under the assumption that the presentation matrix φ of <i>E</i> is <i>almost linear</i>, i.e. the entries of all but one column of φ are linear. This theorem extends to modules a known result of Boswell and Mukundan on the Rees algebra of almost linearly presented perfect ideals of height 2 (see [5, 5.3 and 5.7]).</div></div><div><br></div><div><div>The second part of this thesis studies the Cohen-Macaulay property of the special fiber ring<i> F(E)</i> of a module <i>E</i>. In Theorem 6.2.14, we prove that the generic Bourbaki ideals of Simis, Ulrich and Vasconcelos allow to reduce the problem to the case of fiber cones of ideals, similarly as for Rees algebras. We then provide sufficient conditions for <i>F(E)</i> to be Cohen-Macaulay. Our Theorems 6.2.15, 6.1.3 and 6.2.18 are module versions of results proved for the fiber cone of an ideal by Corso, Ghezzi, Polini and Ulrich (see [10, 3.1] and [10, 3.4]) and by Monta˜no (see [47, 4.8]), respectively.</div></div><div><br></div>
2

The Equations Defining Rees Algebras of Ideals and Modules over Hypersurface Rings

Matthew J Weaver (11108382) 26 July 2022 (has links)
<p>The defining equations of Rees algebras provide a natural pathway to study these rings. However, information regarding these equations is often elusive and enigmatic. In this dissertation we study Rees algebras of particular classes of ideals and modules over hypersurface rings. We extend known results regarding Rees algebras of ideals and modules to this setting and explore the properties of these rings.</p> <p><br></p> <p>The majority of this thesis is spent studying Rees algebras of ideals in hypersurface rings, beginning with perfect ideals of grade two. After introducing certain constructions, we arrive in a setting similar to the one encountered by Boswell and Mukundan in [3]. We establish a similarity between Rees algebras of ideals with linear presentation in hypersurface rings and Rees algebras of ideals with <em>almost</em> linear presentation in polynomial rings. Hence we adapt the methods developed by Boswell and Mukundan in [3] to our setting and follow a path parallel to theirs. We introduce a recursive algorithm of <em>modified Jacobian dual iterations</em> which produces a minimal generating set for the defining ideal of the Rees algebra.</p> <p><br></p> <p>Once success has been achieved for perfect ideals of grade two, we consider perfect Gorenstein ideals of grade three in hypersurface rings and their Rees algebras. We follow a path similar to the one taken for the previous class of ideals. A recursive algorithm of <em>gcd-iterations</em> is introduced and it is shown that this method produces a minimal generating set of the defining ideal of the Rees algebra. </p> <p><br></p> <p>Lastly, we extend our techniques regarding Rees algebras of ideals to Rees algebras of modules. Using <em>generic Bourbaki ideals</em> we study Rees algebras of modules with projective dimension one over hypersurface rings. For such a module $E$, we show that there exists a generic Bourbaki ideal $I$, with respect to $E$, which is perfect of grade two in a hypersurface ring. We then adapt the techniques used by Costantini in [9] to our setting in order to relate the defining ideal of $\mathcal{R}(E)$ to the defining ideal of $\mathcal{R}(I)$, which is known from the earlier work mentioned above.</p> <p><br></p> <p>In all three situations above, once the defining equations have been determined, we investigate certain properties of the Rees algebra. The depth, Cohen-Macaulayness, relation type, and Castelnuovo-Mumford regularity of these rings are explored.</p>

Page generated in 0.0447 seconds