• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Photonic Integration with III-V Semiconductor Technologies

Paul, Tuhin 13 April 2022 (has links)
This dissertation documents works on two projects, which are broadly related to photonic integration using III-V semiconductor platform for fiber-based optical communication. Our principal project aims to demonstrate continuous variable quantum key distribution (CV-QKD) with InP-based photonic integrated cir cuit at the 1550 nanometer of optical wavelength. CV QKD protocols, in which the key is encoded in the quadrature variables of light, has generated immense interest over the years because of its compatibility with the existing telecom infrastructure. In this thesis, we have proposed a design of a photonic inte grated circuit potentially capable of realizing this protocol with coherent states of light. From the practical perspective, we have basically designed an optical transmitter and an optical receiver capable of carrying out coherent communi cation via the optical fiber. Initially, we established a mathematical model of the transceiver system based on the optical transfer matrix of the foundry spe cific (Fraunhofer Heinrich Hertz Institute-Germany) building blocks. We have shown that our chip design is versatile in the sense that it can support multiple modulation schemes. Based on the mathematical model, we estimated the link budget to assess the feasibility of on-chip implementation of our protocol. Then we ran a circuit level simulation using the process design kit provided by our foundry to put our analysis on a better footing. The encouraging result from this step prompted us to generate the mask layout for our transceiver chips, which we eventually submitted to the foundry. The other project in the thesis grew out of a collaboration with one of our industry partners. The goal of the project is to enhance the performance of a distributed feedback laser emitting at the 1310 nanometer of optical wavelength by optimizing its design. To that end, we first derived the expression for transmission and reflection spectrum for the laser cavity. Those expressions contained parameters which needed to be obtained from the transverse and the longitudinal mode analysis of the laser. We performed the transverse mode analysis and the longitudinal mode analysis with commercially available numerical solvers. Those mode profiles critically depend on the grating physical parameters. Therefore by tweaking grating dimensions one can control the transmission characteristics of the laser.

Page generated in 0.1121 seconds