• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Time-Gated Fourier-Domain Optical Coherence Tomography

Muller, Matthew S. 16 January 2008 (has links)
Optical coherence tomography (OCT) has been shown to be a versatile three-dimensional imaging tool in diagnostic medicine, combining micrometre-scale resolutions with fast acquisition times. This imaging modality uses the interference between light backscattered from a sample and light that has traversed a known reference path delay to determine the scattering profile over penetration depths of up to several millimetres in tissue. A novel OCT system is presented that uses nonlinear optics to process the backscattered light in the optical domain prior to standard Fourier-domain OCT acquisition and processing. The nonlinear optical effects experienced between short light pulses are strongly intensity-dependent, occurring only significantly when the pulses are temporally and spatially overlapped. These conditions allow for the creation of a user-controlled time gate that restricts the light backscattered from the sample to a narrow (~100 micrometres) depth field of view prior to detection. When strong and weak scattering interfaces exist across the sample depth range, the signal-to-noise ratio of the weaker scattering sites can be limited by the finite detector dynamic range in Fourier-domain OCT systems. By aligning the time gate temporal delay to the backscatter from the weak interfaces of interest, a user can completely remove the strong backscattered light and enhance imaging contrast. The nonlinear effect used in the current time-gated OCT design is sum-frequency generation, which provides an additional advantage of imaging at near infrared (1280 nm) wavelengths, used for long penetration depths in tissue, while detection is performed in the visible (504 nm) with silicon-based camera technology. With the reduced depth field of view, the number of sampling points required per depth scan is also proportionately reduced, permitting faster acquisition rates for the time-gated region of interest. A complete description of the time-gated OCT system design is presented, along with proof-of-concept images demonstrating contrast enhancement and operation in a highly scattering biological medium. Based on its successful initial performance, future development of this system is expected for its eventual use in many OCT imaging applications. / Thesis (Master, Physics, Engineering Physics and Astronomy) -- Queen's University, 2008-01-15 20:05:41.665 / This work was funded by the Natural Sciences and Engineering Research Council and the Cancer Imaging Network of Ontario, supported by Cancer Care Ontario

Page generated in 0.1222 seconds