Spelling suggestions: "subject:"coherent anda convex risk measure"" "subject:"coherent ando convex risk measure""
1 |
On some aspects of coherent risk measures and their applicationsAssa, Hirbod 07 1900 (has links)
Le sujet principal de cette thèse porte sur les mesures de risque. L'objectif général est d'investiguer certains aspects des mesures de risque dans les applications financières. Le cadre théorique de ce
travail est celui des mesures cohérentes de risque telle que définie dans Artzner et al (1999). Mais ce n'est pas la seule classe de mesure du risque que nous étudions. Par exemple, nous étudions aussi quelques aspects des "statistiques naturelles
de risque" (en anglais natural risk statistics) Kou et al (2006) et des mesures convexes du risque Follmer and Schied(2002). Les contributions principales de cette
thèse peuvent être regroupées selon trois axes: allocation de capital, évaluation des risques et capital requis et solvabilité.
Dans le chapitre 2 nous caractérisons les mesures de risque avec la propriété de Lebesgue sur l'ensemble des processus bornés càdlàg (continu à droite, limité à gauche). Cette caractérisation nous permet de présenter deux applications dans l'évaluation des risques et l'allocation de
capital. Dans le chapitre 3, nous étendons la notion de statistiques naturelles de risque à l'espace des suites infinies.
Cette généralisation nous permet de construire de façon cohérente des mesures de risque pour des bases de données de n'importe quelle taille. Dans le chapitre 4, nous discutons le concept de "bonnes affaires" (en anglais Good Deals), pour notamment caractériser les situations du marché où ces positions pathologiques
sont présentes. Finalement, dans le chapitre 5, nous essayons de relier les trois chapitres en étendant la définition de "bonnes affaires" dans un cadre plus
large qui comprendrait les mesures de risque analysées dans les chapitres 2 et 3. / The aim of this thesis is to study several aspects of risk measures particularly in the context of financial applications. The primary framework that we use is that of coherent risk measures as defined in Artzner et al (1999). But this is not the only class of risk measures that we study here. We also investigate the concepts of natural risk statistics Kou et al (2006) and convex risk measure Follmer/ and Schied (2002). The main contributions of this Thesis can be classified in three main axes: Capital allocation, risk measurement and capital requirement and solvency. In chapter 2, we characterize risk measures with the Lebesgue property on bounded càdlàg processes. This allows to present two applications in risk assessment and capital allocation. In chapter 3, we extend the concept of natural risk statistics to the space of infinite sequences. This has been done in order to introduce a consistent way of constructing risk measures for data bases of any size. In chapter 4, we discuss the concept of Good Deals and how to deal with a situation where these pathological positions are present in the market. Finally, in chapter 5, we try to relate all three chapters by extending the definition of Good Deals to a larger set of risk measures that somehow includes the discussions in chapters 2 and 3.
|
2 |
On some aspects of coherent risk measures and their applicationsAssa, Hirbod 07 1900 (has links)
Le sujet principal de cette thèse porte sur les mesures de risque. L'objectif général est d'investiguer certains aspects des mesures de risque dans les applications financières. Le cadre théorique de ce
travail est celui des mesures cohérentes de risque telle que définie dans Artzner et al (1999). Mais ce n'est pas la seule classe de mesure du risque que nous étudions. Par exemple, nous étudions aussi quelques aspects des "statistiques naturelles
de risque" (en anglais natural risk statistics) Kou et al (2006) et des mesures convexes du risque Follmer and Schied(2002). Les contributions principales de cette
thèse peuvent être regroupées selon trois axes: allocation de capital, évaluation des risques et capital requis et solvabilité.
Dans le chapitre 2 nous caractérisons les mesures de risque avec la propriété de Lebesgue sur l'ensemble des processus bornés càdlàg (continu à droite, limité à gauche). Cette caractérisation nous permet de présenter deux applications dans l'évaluation des risques et l'allocation de
capital. Dans le chapitre 3, nous étendons la notion de statistiques naturelles de risque à l'espace des suites infinies.
Cette généralisation nous permet de construire de façon cohérente des mesures de risque pour des bases de données de n'importe quelle taille. Dans le chapitre 4, nous discutons le concept de "bonnes affaires" (en anglais Good Deals), pour notamment caractériser les situations du marché où ces positions pathologiques
sont présentes. Finalement, dans le chapitre 5, nous essayons de relier les trois chapitres en étendant la définition de "bonnes affaires" dans un cadre plus
large qui comprendrait les mesures de risque analysées dans les chapitres 2 et 3. / The aim of this thesis is to study several aspects of risk measures particularly in the context of financial applications. The primary framework that we use is that of coherent risk measures as defined in Artzner et al (1999). But this is not the only class of risk measures that we study here. We also investigate the concepts of natural risk statistics Kou et al (2006) and convex risk measure Follmer/ and Schied (2002). The main contributions of this Thesis can be classified in three main axes: Capital allocation, risk measurement and capital requirement and solvency. In chapter 2, we characterize risk measures with the Lebesgue property on bounded càdlàg processes. This allows to present two applications in risk assessment and capital allocation. In chapter 3, we extend the concept of natural risk statistics to the space of infinite sequences. This has been done in order to introduce a consistent way of constructing risk measures for data bases of any size. In chapter 4, we discuss the concept of Good Deals and how to deal with a situation where these pathological positions are present in the market. Finally, in chapter 5, we try to relate all three chapters by extending the definition of Good Deals to a larger set of risk measures that somehow includes the discussions in chapters 2 and 3.
|
3 |
On the design of customized risk measures in insurance, the problem of capital allocation and the theory of fluctuations for Lévy processesOmidi Firouzi, Hassan 12 1900 (has links)
No description available.
|
Page generated in 0.1271 seconds