• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 5
  • 5
  • 5
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Combinaison cohérente de convertisseurs de fréquences optiques / Coherent combining of optical frequency converters

Odier, Alice 19 January 2018 (has links)
Les convertisseurs de fréquences optiques utilisant les processus non linéaires d’ordre deux permettent d’étendre la gamme spectrale accessible aux sources lasers. Celle-ci est en effet limitée par les bandes de gain des milieux lasers disponibles. Par ailleurs, la combinaison cohérente par contrôle actif de la phase est une technique efficace permettant la montée en puissance des sources lasers. Elle nécessite toutefois des modulateurs de phase rapides qui ne sont disponibles commercialement qu’aux longueurs d’onde standard.L’objectif de cette thèse est d'appliquer la combinaison cohérente à des convertisseurs de fréquences en utilisant la relation de phase inhérente au processus non linéaire.Cela permet de contrôler la phase de l’onde générée en agissant sur la phase de l’onde de pompe. C’est ce qu’on appelle le contrôle indirect de la phase.Pour cela, une étude théorique a été menée afin de s’assurer de la compatibilité de la technique de combinaison cohérente par marquage en fréquence avec le contrôle indirect de la phase.La démonstration expérimentale a d’abord été effectuée dans le cas le plus simple, la génération de seconde harmonique, qui met en jeu trois ondes dont deux dégénérées.Enfin, on s’est intéressé au cas de la génération de différence de fréquences dans le moyen infrarouge, où trois ondes sont mises en jeu.Dans ces deux cas, la qualité de mise en phase mesurée est excellente. / Laser emission wavelength is limited by the gain bandwidth of available laser media. Optical frequency converters rely on second order nonlinear processes to overcome this limitation, and give access to new wavelengths outside of the emission range of lasers.Besides, coherent beam combining with active phase control is an efficient technique to power scale laser sources. However, it requires fast phase modulators, some commercially available devices, but only at standard laser wavelengths.The objective of this thesis is to perform coherent combining of frequency converters, thanks to the phase-matching condition required for efficient nonlinear processes to take place.This relation allows for indirect phase control, where the converted-wave phase is tuned through direct phase control of the pump wave.A theoretical study has been carried out to confirm that indirect phase control was compatible with frequency-tagging coherent combining.Then, coherent combining through indirect phase control has been demonstrated experimentally in the simplest case of the second harmonic generators, where two of the three waves involved are degenerate.Finally, coherent combining has been experimentally performed in the non-degenerate case of mid-infrared difference frequency generators.In both experimental demonstrations, an excellent beam combination efficiency has been achieved.
2

Combinaison cohérente de diodes laser de puissance / Coherent combination of high-power diode lasers

Schimmel, Guillaume 15 December 2016 (has links)
La capacité des sources laser à concentrer une quantité d’énergie énorme intéresse beaucoup le secteur industriel pour l’usinage et la structuration de la matière. Il faut pour cela rassembler une forte puissance optique sur une surface infime: on parle alors de luminance. La combinaison cohérente permet de répondre à la problématique de l’augmentation de la luminance d’un système laser. Dans le cadre du projet européen BRIDLE, ces travaux sont focalisés sur la combinaison cohérente de lasers à semi-conducteur. Ce type de combinaison nécessite un accord de phase stable entre les différents émetteurs. Plusieurs techniques permettent cette mise en phase; nous étudions en particulier les techniques d’amplification en parallèle ainsi que l’utilisation d’une cavité externe commune. L’originalité se situe dans le développement d’une architecture nouvelle, pensée pour optimiser l’extraction de puissance. La technique consiste à utiliser une cavité étendue commune aux émetteurs à combiner pour leur mise en phase, placée sur leur face arrière. Tout en fournissant un fort retour optique arrière nécessaire à la mise en phase, l’extraction de puissance est maximisée sur la face avant où les faisceaux sont par la suite combinés extracavité. Ce document démontre la bonne adéquation de cette architecture avec les meilleures diodes laser en termes de luminance : les émetteurs à section évasée. L’étude est étendue à une barrette de diodes par l’utilisation d’éléments diffractifs optique permettant la séparation et la combinaison des faisceaux. / Scaling up the brightness of laser diodes is a major research objective in the laser community. The coherent beam of several emitters is the most efficient technique to increase the brightness by constructive interference. An efficient combination can only be achieved in an arrangement that forces the required phase relation between the emitters. Different approaches are investigated: either active phase-locking of amplifiers seeded by a single-frequency laser split into N beams and amplified in parallel, or passive selforganization of emitters in a common laser cavity. We investigate a new coherent combining architecture using a common extended cavity on the back side of diode lasers for phase locking. As a result, the efficiency of the phase-locked laser cavity is increased as compared to standard front-side configurations. Moreover, such an extended cavity placed on the rear-side provides the strong optical feedback required for phase-locked operation. This configuration is demonstrated with high-brightness tapered devices, highlighting the capability of such setup for high power operation. This architecture is then extended to diode laser arrays by the use of diffractive optical elements.
3

Combinaison cohérente de lasers à cascade quantique / Coherent combining of quantum cascade lasers

Bloom, Guillaume 14 February 2012 (has links)
Des applications comme les contre-mesures optiques nécessitent des sources puissantes et avec une bonne qualité de faisceau dans le moyen infrarouge. Le laser à cascade quantique (LCQ) est une solution prometteuse mais la puissance fournie par ces lasers n’est pas suffisante. La combinaison cohérente de plusieurs de ces sources devrait permettre de sommer leurs puissances tout en conservant la qualité de faisceau d’un émetteur unique et constitue donc une solution intéressante pour contourner l’actuelle limitation en puissance des LCQ.Nous présentons une étude théorique et expérimentale de la combinaison de faisceaux cohérente de LCQ dans une cavité externe commune utilisant un coupleur de faisceaux. La mise en phase est ici totalement passive puisque fondée sur la minimisation des pertes dans la cavité globale : on parle d’auto-organisation. Un modèle général permettant de quantifier l’efficacité de combinaison et la stabilité de telles cavités est développé. Dans un premier temps, on montre expérimentalement que la combinaison cohérente de deux LCQ dans une cavité Michelson est une solution efficace et stable. Pour combiner plus d’émetteurs il est nécessaire de concevoir des coupleurs de faisceaux dans le moyen infrarouge efficaces. Pour cela, nous avons étudié deux types de réseaux : les réseaux de phase binaire (réseaux de Dammann) et des structures à gradient d’indice composées de motifs sub-longueur d’onde. Le dessin et l’optimisation de telles structures fait appel à la théorie des milieux artificiels et nécessite l’utilisation d’un code de résolution rigoureuse des équations de Maxwell (RCWA). Enfin, la combinaison cohérente de cinq LCQ en cavité externe avec un coupleur de faisceaux est démontrée expérimentalement et la combinaison d’un plus grand nombre de LCQ est discutée. En conclusion, nous présentons une solution originale pour réaliser la combinaison cohérente passive de LCQ et ainsi apporter une solution à l’augmentation de puissance dans le moyen infrarouge. / Powerful sources in the mid-infrared with a good beam quality are highly needed for applications such as optical countermeasures. The quantum cascade laser (QCL) is a promising solution but the maximum power achievable is not sufficient. The coherent beam combining of several QCL could lead to higher output power in the same beam and thus is an interesting solution to circumvent the current power limitation of these sources.We present a theoretical and experimental study of the coherent beam combining of QCL in a common external cavity with a beam combiner. The phase locking is totally passive since it is only based on loss minimization in the external cavity: it is a self-organization process. A general model is developed to quantify the combining efficiency and the stability that can be obtained from this method. Experimentally, the coherent combining of two QCL in a Michelson cavity is studied first and demonstrated to be efficient and stable. In order to combine more emitters, an efficient beam combiner must be designed in the mid-infrared. For that purpose, two type of gratings, a classical binary phase grating (or Dammann grating) and a more complex gradient-index structure made of local sub-wavelength patterns are designed and compared. The calculation and optimization of this sub-wavelength structure is based on the artificial media theory and is achieved with rigorous coupled wave analysis (RCWA). Finally, the coherent combining of five QCL in an external cavity with a binary phase grating is demonstrated and the scalability to the combining of more emitters is discussed. In conclusion, we present an original solution to combine coherently several QCL and thus address the power scaling issue in the mid-infrared.
4

Combinaison cohérente d'amplificateurs à fibre en régime femtoseconde / Coherent combining of femtosecond fiber amplifiers

Daniault, Louis 05 December 2012 (has links)
Pour un grand nombre d'applications, les sources laser impulsionnelles femtoseconde (fs) doivent fournir des puissances toujours plus importantes. En régime impulsionnel, on recherche d'une part une forte puissance crête par impulsion, et d'autre part une forte puissance moyenne, c'est à dire un taux de répétition élevé. Parmi les technologies existantes, les amplificateurs à fibre optique dopée ytterbium présentent de nombreux avantages pour l'obtention de fortes puissances moyennes, cependant le fort confinement des faisceaux dans la fibre sur de grandes longueurs d'interaction induit inévitablement des effets non-linéaires, et limite ainsi la puissance crête accessible. Nous avons étudié lors de cette thèse la combinaison cohérente d'impulsions fs appliquée aux systèmes fibrés.Ayant déjà fait ses preuves dans les régimes d'amplification continu et nanoseconde, la combinaison cohérente de faisceaux (dite combinaison spatiale) permet de diviser une seule et unique source en N voies indépendantes, disposées en parallèle et incluant chacune un amplificateur. Les faisceaux amplifiés sont ensuite recombinés en espace libre en un seul et unique faisceau, qui contient toute la puissance des N amplificateurs sans accumuler les effets non-linéaires. Cette architecture permet théoriquement de monter d'un facteur N le niveau de puissance crête issu des systèmes d'amplification fibrés. Au cours de cette thèse, nous avons démontré la compatibilité et l'efficacité de cette méthode en régime d'amplification fs avec deux amplificateurs, selon différents procédés. Les expériences démontrent d'excellentes efficacités de combinaison ainsi qu'une très bonne préservation des caractéristiques temporelles et spatiales initiales de la source. Les procédés de combinaison cohérente nécessitent cependant un accord de phase entre différents amplificateurs stable dans le temps, assuré en premier lieu par une boucle de rétroaction. Nous avons poursuivi notre étude en concevant une architecture totalement passive, permettant une implémentation plus simple d'un système de combinaison à deux faisceaux sans asservissement électronique. Enfin, une méthode passive de combinaison cohérente dans le domaine temporel est étudiée et caractérisée dans le domaine fs, et implémentée simultanément avec la méthode passive de combinaison spatiale proposée précédemment. Ces expériences démontrent la validité et la variété des concepts proposés, ainsi que leurs nombreuses perspectives pour les systèmes d'amplification fs fibrés. / Applications addressed by femtosecond (fs) laser sources are requiring increasing pulse energies and increasing average powers. Ytterbium-doped fiber amplifiers are excellent candidates to generate high average powers at high repetition rates, but present strong disadvantages in terms of peak power. Indeed, the tight confinement of the beam over long interaction length induces nonlinear effects at high peak-powers that affect the overall performances of fiber systems. This work describes coherent combining methods that can be used to scale the performances of femtosecond laser sources.Coherent beam combining has been widely used in CW regime and more recently in the nanosecond range. It consists in splitting a single seed into N beam replicas, amplified each by independent amplifiers in parallel. Their respective outputs are combined in free space into one single beam that carries the power of the N amplifiers without cumulating nonlinearities. This architecture allows scaling both peak and average powers of the amplification systems. We have studied and demonstrated the efficiency of active coherent beam combining in the fs regime with two fiber amplifiers, which are peak-power limited. The experiments show the preservation of the temporal/spectral/spatial properties of the combined pulses, with high combination efficiencies.Coherent beam combining methods require phase-matching between all the beams to combine. This is usually achieved by an active feedback loop on each amplifier along with a phase detection scheme. We demonstrate that a Sagnac interferometer can be used to ensure perfect and stable phase-matching over time, which considerably simplifies the setup. Finally, another passive combining method known as divided-pulse amplification, acting in the temporal domain, is studied and demonstrated in the fs regime. It is coupled with the passive spatial combining method described above to scale the number of pulse divisions. All these experiments show the compatibility of coherent combining concepts in the fs regime and provide new opportunities for fiber amplifier systems.
5

Combinaison cohérente dans une fibre multicœurs pour des applications LIDAR / Coherent combining in multicore fiber for LIDAR applications

Prevost, Florian 28 February 2017 (has links)
Les Lidars cohérents permettent de mesurer la vitesse du vent à grande distance, en se basant sur le décalage en fréquence Doppler induit par la réflexion des aérosols. Le Lidar vent est composé d'un système MOPFA (Master Oscillator Power Fiber Amplifier), contenant un oscillateur continu, un modulateur d'intensité, et un amplificateur fibré. L'objectif principal de cette thèse est la réalisation d'un MOPFA pulsé de forte puissance crête à sécurité oculaire, en utilisant une fibre multicoeurs dopée erbium. L'impulsion mono-fréquence dans les fibres est limitée par les effets non-linéaire du au confinement du faisceau dans le coeur. Les fibres multicoeurs peuvent être vues comme des fibres à larges coeur. L'impulsion à amplifier est divisée et injectée dans tous les coeurs de la fibre amplificatrice à l'aide d'un modulateur spatial de lumière (SLM). A la sortie, les impulsions amplifiées sont recombinées par un élément optique de diffraction (EOD). La combinaison cohérente en sortie requière un contrôle indépendant des phases à l'injection qui est asservit par un algorithme basé sur la puissance de l'ordre zéro de l'EOD. La puissance crête après combinaison est alors la somme des puissances crêtes atteintes dans chacun des coeurs. / Coherent Lidars can measure wind speed at long distance, using the Doppler frequency shift induced by the movement of the back reflecting aerosols. Wind Lidars usually include a MOPFA (Master Oscillator Power Fiber Amplifier) made of a continuous oscillator, an intensity modulator and a fiber amplifier. The main objective of this thesis is the realization of an eye-safe, high peak power, pulsed MOPFA using an erbium-doped multicore fiber. Single frequency pulse amplification in fibers is limited by nonlinear effects due to tight beam confinement in the core. Multicore fibers can be seen as a very large core fiber, thus mitigating the nonlinear effects. The pulse to be amplified is divided and injected into all cores of the amplifying fiber using a spatial light modulator (SLM). The amplified output pulses are then recombined at the fiber output by a diffractive optical element (DOE). The coherent combination at fiber output requires independent control of phases at injection provided by a feedback loop based on the DOE zero order power. The peak power after combination is the sum of the peak powers reached in each of the cores.

Page generated in 0.0902 seconds