• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 18
  • 2
  • 2
  • 1
  • Tagged with
  • 33
  • 11
  • 10
  • 10
  • 10
  • 9
  • 8
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Régulation dynamique de l’association des cohésines aux chromosomes, établissement et maintien de la cohésion des chromatides sœurs / Dynamic regulation of cohesin association with chromosomes, sister chromatid cohesion establishment and maintenance

Feytout, Amélie 09 December 2010 (has links)
Le complexe cohésine maintient associées les chromatides sœurs depuis la réplication jusqu’à leur ségrégation en mitose. Une question majeure est de comprendre comment la cohésion est établie lors de la phase S. Chez les mammifères et S. pombe, les cohésines sont associées de manière labile aux chromosomes pré-réplicatifs et l’établissement de la cohésion en phase S s’accompagne de la stabilisation de l’association des cohésines aux chromosomes. L’objectif de ce travail est de comprendre comment la dynamique des cohésines est régulée et comment son inhibition créée la cohésion.En G1 les cohésines associées aux chromosomes s’échangent avec le pool soluble et leur dissociation dépend de Pds5 et Wapl. La première partie de ce travail présente les résultats d’un crible génétique visant à identifier de nouveaux régulateurs de la dynamique des cohésines.L’établissement de la cohésion nécessite l’acétyltransférase Eso1 mais pas en contexte Δwpl1, indiquant que la seule mais essentielle fonction d’Eso1 est de s’opposer à celle de Wapl. L’acétylation de Smc3 par Eso1 contribue mais n’est pas suffisante pour contrecarrer Wapl, suggérant l’existence d’un autre événement dépendant d’Eso1. En G1, Pds5 agit avec Wapl pour dissocier les cohésines des chromosomes mais après la phase S, Pds5 est requise pour leur maintien sur les chromosomes et pour la cohésion à long terme. Pds5 co-localise avec la fraction stable de cohésines mais pas Wapl. Nous suggérons un modèle dans lequel la cohésion est créée par deux événements d’acétylation couplés à la progression de la fourche de réplication conduisant à l’éviction de Wapl des cohésines destinées à produire la cohésion. / Following DNA replication, sister chromatids are connected by cohesin to ensure their correct segregation during mitosis. How cohesion is created is still enigmatic. The cohesin subunit Smc3 becomes acetylated by ECO1, a conserved acetyl-transferase, and this change is required for cohesion. As in mammals, fission yeast cohesin is not stably bound to G1 chromosomes but a fraction becomes stable when cohesion is made. The aim of this work was to understand how cohesin dynamics is regulated and how the change in cohesin dynamics creates cohesion.In G1 chromatin bound cohesin exchange with the soluble pool and the unloading reaction relies in part on Wapl. The first part of this study reports on the identification of G1/S factors as new candidate regulators of cohesin dynamics.Following S phase a stable cohesin fraction is made. The acetyl-transferase Eso1 is not required for this reaction when the wpl1 gene is deleted. Yet, it is in wild-type cells, showing that the sole but essential Eso1 function is counteracting Wapl. Eso1 acetylates the cohesin sub-unit Smc3. This renders cohesin less sensitive to Wapl but does not confer the stable binding mode, suggesting the existence of a second Eso1-dependent event. The cohesin sub-unit Pds5 act together with Wapl to promote cohesin removal from G1 chromosomes but after S phase Pds5 is essential for cohesin retention on chromosomes and long term cohesion. Pds5 co-localizes with the stable cohesin fraction whereas Wapl does not. We suggest a model in which cohesion establishment is made by two acetylation events coupled to fork progression leading to Wapl eviction while keeping Pds5 on cohesin complexes intended to make cohesion.
12

Estudos estruturais de dockerinas e cohesinas em Ruminococcus flavefaciens e sua aplicação no desenvolvimento de matrizes auto montáveis de proteínas / Structural studies of dockerins and cohesins of Ruminococcus flavefaciens and their application in self-assembling arrays of proteins

Andrade, Gabriel Belem de 28 June 2017 (has links)
O celulossomo é um complexo multienzimático extracelular utilizado por bactérias anaeróbias para a degradação de biomassa vegetal. Ele é composto por escafoldinas, estruturas alongadas que abrigam diversos módulos cohesina, às quais se ligam dockerinas, seus parceiros de interação específica de alta afinidade, fusionados às enzimas celulolíticas. Os módulos cohesina e dockerina compõem o elemento central da interação entre todos os componentes que integram o celulossomo. Esses módulos são divididos em tipos, de acordo com sua sequência primária. Essa divisão reflete efeitos funcionais distintos, sendo o tipo I responsável pela ligação de enzimas às escafoldinas, enquanto o tipo II medeia a ligação de escafoldinas à célula. O celulossomo de Ruminococcus flavefaciens é o mais complexo conhecido, e na classificação por tipos, suas sequências divergem, formando o tipo III, que foi posteriormente subdividido em 6 grupos para significância funcional. Nesse sistema, o principal responsável pela integração de enzimas ao sistema é a escafoldina primária ScaA, a qual interage com escafoldina adaptadora ScaB. A especificidade dessa ligação - dockerina de ScaA (Rf-DocA) com cohesinas de ScaB (Rf-CohB1-7) - é classificada como único membro do grupo 5, na divisão de grupos que compõem o tipo III. Assim, essa interação é de suma importância para a organização do celulossomo desse organismo, tendo sido estudada por meio de experimentos biofísicos e bioquímicos. Porém a falta de uma estrutura cristalina resolvida desses componentes limita a compreensão que podemos ter sobre a interação. 1-2 Nesse trabalho, apresentamos as estruturas cristalográficas de Rf-DocA, em complexo com a Rf-CohB4, além da estrutura dessa cohesina isolada, e ainda, a Rf-CohB1, e alguns de seus mutantes pontuais. Com isso, esclarecemos aspectos estruturais desses módulos, como a presença de dois sítios funcionais de ligação a cálcio em Rf-DocA. Também é observável pelos modelos gerados, detalhes da ligação entre eles, como os resíduos participantes da interação. Estudos de afinidade entre esses módulos foram conduzidos para a elucidar algumas propriedades da ligação entre esses módulos, de forma que descobrimos que ela ocorre de uma única maneira, e que há um loop na cohesina cuja flexibilidade afeta a afinidade da ligação. Isso sugere um mecanismo de alteração conformacional que regula a ligação à dockerina. Adicionalmente, buscamos o emprego desses módulos em uma aplicação tecnológica, desenhando redes automontáveis de proteínas, visando a construção de um nanomaterial. Essas redes são formadas por características intrínsecas das proteínas que os compõem, sendo o principal fator considerado sua simetria rotacional.3 Nesse sentido, as dockerinas e cohesinas foram utilizadas para ligação entre proteínas de diferentes simetrias. Utilizamos proteínas de simetrias C3, C4 e C6 com fusão a dockerinas, que se conectam às cohesinas fusionadas a proteínas de simetria C2, as quais formam o elemento linear da ligação entre os diferentes módulos. Esse desenho experimental permite a expressão e purificação independentes dos componentes, o que facilita a obtenção das redes, a partir da mistura dos dois componentes. Através de análises preliminares por microscopia eletrônica de transmissão, observamos a formação de filmes bidimensionais extensos e nanotubos com a construção testada. / The cellulosome is an intricate multienzyme extracelular complexes evolved by anaerobic bacteria for degradation of cellulosic biomass. It is composed of scaffoldins, elongated structures, which bare numerous cohesin modules, which bind to dockerin modules, their high affinity and specificity partners, borne by cellulolytic enzymes. The cohesin and dockerina modules constitute the central element of the interaction between every component of the cellulosome. These modules are categorized in types, according to their primary sequence. That distribution reflects distinct functions, in which the type I is responsible for integration of enzymes to scaffoldins, while type II mediates anchoring of scaffoldins to the cell wall. The cellulosome of Ruminococcus flavefaciens is the most intricate known to date, which is categorized into a third type of cohesins and dockerins, due to sequence diversion. The type III was further divided into 6 groups to impart functional significance. In that system, the main enzyme integrating component is the primary scaffoldin ScaA, which interacts to the adaptor scaffoldin ScaB. The specificity of this interaction - dockerina of ScaA (Rf-DocA) to ScaB cohesins (Rf-CohB1-7) - is sorted as a single member of group 5, in the subtypes of type III. Thus, this interaction is essential for cellulosome organization, having been studied by biophysical and biochemical experiments. However, the lack of a solved crystalline structure of these components narrows our understanding on this interaction. In the present study, we present the structures of Rf-DocA, complexed to Rf-CohB4, besides the structure of this isolated cohesin, and also Rf-CohB1 and its point mutants. Due to these data, we clarify structural aspects of these modules, such as the occurrence of two functioning calcium binding sites in Rf-DocA. We also identified details of their binding, such as the interacting residues. Through binding affinity studies, we concluded that the interaction between these modules occurs in a single mode, and that there is a loop in the cohesin module whose flexibility has direct effects on the binding affinity to dockerin. Additionally, we sought to utilize these modules in a downstream application, by designing self-assembling arrays of proteins, aiming for the construction of a nanomaterial. These arrays are constructed from the intrinsic properties of its constituent proteins, in which the main factor is rotational symmetry. In this context, dockerina and cohesin modules were used of binding different symmetry proteins. We utilized C3, C4 and C6 point symmetry proteins fused to dockerin modules, which bind to the cohesin modules fused to C2 point symmetry proteins, which establish the linear connection between the distinct components. This experimental design allows for the independent expression and purification of the components, which facilitates the achievement of the arrays, by simple mixture of the two components. Through preliminary analysis by transmission election microscopy, we observed the construction of two-dimensional films and nanotubes.
13

The role of elements binding CTCF and cohesin in directing tissue-specific enhancer activity

Hanssen, Lars January 2016 (has links)
Distal enhancer elements regulate the tissue-specific expression of their target genes via the establishment of physical interactions with the gene promoter. In mice, a cluster of five enhancers, jointly classified as a super-enhancer, specifically upregulate α-globin gene expression during erythroid differentiation. Aside from the Nprl3 gene, whose promoter is located inside this enhancer region, expression-levels of other genes within a short distance (&lt,50kb) of the enhancer region are not affected by the activation of the enhancer in erythroid cells, despite being located within the same sub-TAD in erythroid cells. The CCCTC-binding factor (CTCF) is implicated in the organisation of chromosome topology through the formation of interactions between its binding sites in an orientation-dependent manner. In this thesis, I demonstrate that CTCF functions in vivo as a boundary to maintain α-globin enhancer-promoter specificity in erythroid cells. The study of the local chromatin architecture by next-generation Capture-C reveals that α-globin enhancer and promoter interactions are constrained to a compartment of roughly 70kb. The unidirectional interaction profiles of the α-globin enhancers are delimited by the interactions between two genomic domains flanking the α-globin cluster. Further investigation shows that each of these domains contains several CTCF binding sites orientated in tandem, such that CTCF binding orientation between domains is convergent. Although CTCF binding across the α-globin locus is identical between mouse embryonic stem (ES) cells and erythroid cells, interaction between these domains occurs only in erythroid cells suggesting it is dependent on the formation of tissue-specific α-globin enhancer-promoter interactions. By generating a series of mouse models, deleting CTCF binding sites at the α-globin enhancers singly and in combination, I show that the deletion of two CTCF binding sites directly flanking the enhancer cluster results in a shift in interactions between flanking domains, away from the enhancer region. This leads to an expansion of enhancer interactions to include two genes directly upstream of the α-globin enhancers: Rhbdf1 and Mpg. Despite the Rhbdf1 gene being subject to polycomb group protein-mediated gene repression in erythroid cells, ablation of CTCF binding results in increased interactions between both the Rhbdf1 and Mpg gene promoters and the α-globin enhancers and concurrent strong transcriptional upregulation of both genes. The Rhbdf1 gene promoter acquires the active histone mark H3K4me3, but doesn't lose Polycomb Repressive Complex 2 (PRC2) mark H3K27me3 or binding of its catalytic component Ezh2. Despite the presence of this repressive mark, robust levels of Rhbdf1 expression are detected at levels higher than those in ES cells where this gene is actively expressed under the influence of its own enhancer. I conclude that regulation of the direction of enhancer interactions by CTCF is required for the promoter specificity of enhancers and the maintenance of transcriptional states of nearby genes.
14

Studies in oocytes from three mammalian species demonstrate that meiotic kinetochores are composed of previously unidentified subdomains and reveal two novel mechanisms behind the maternal-age effect in humans

Zielinska, Agata Pamela January 2019 (has links)
Poor egg quality is the leading cause of pregnancy loss and Down's syndrome. While even eggs in young women frequently contain an incorrect number of chromosomes and are therefore unlikely to give rise to a viable pregnancy, the incidence of chromosomally abnormal eggs increases strikingly with advancing maternal age. Why egg quality declines dramatically as women approach their forties remains one of the outstanding questions in developmental biology. This PhD thesis demonstrates how unforeseen features of kinetochore organization that are unique to meiosis render this cell division process in mammals particularly prone to errors. Firstly, my results uncovered an unexpected multi-subunit organization of the meiotic kinetochore, which is widely conserved across mammals and biases eggs towards errors. Secondly, I identified two independent mechanisms that predispose eggs from older women to aneuploidy. The first mechanism affects the fidelity of meiosis I. My analysis revealed that human oocytes challenge the paradigm that sister kinetochores are fully fused. Instead, I demonstrated that sister kinetochores disjoin as women get older, which promoted erroneous kinetochore-microtubule attachments. This in turn allowed chromosomes to rotate on the spindle and provided a mechanistic explanation for reverse segregation - a recently discovered meiotic error that is unique to humans. Secondly, I pioneered the use of super-resolution microscopy to study chromosome architecture in human eggs and discovered that individual kinetochores during meiosis II in mammals are composed of previously unidentified subdomains. In young females, these subdomains are joined together by cohesin complexes. With age, kinetochores fragment into two pieces. Fragmented kinetochores frequently attach merotelically to spindle microtubules, which predisposes aged eggs to errors. What severely hinders our progress in identifying causes of human infertility is that numerous features of human meiosis are not represented in mice. To overcome this challenge, I developed an experimental platform to mimic the age-related changes that occur in humans in oocytes from young mice. I achieved this by extending the applications of Trim-Away, a novel method to degrade endogenous proteins even in primary cells, to partially deplete proteins. Furthermore, I established a new experimental model system to study human-like aspects of meiosis in live non-rodent cells in real time: pig oocytes. Together, these results set foundations for new therapeutic approaches to extend reproductive lifespan by counteracting the age-related loss in kinetochore integrity that this study identified. Furthermore, partial Trim-Away and studying meiosis in pigs opens new directions for meiotic research.
15

Deciphering the Role of Aft1p in Chromosome Stability

Hamza, Akil 25 January 2012 (has links)
The Saccharomyces cerevisiae iron-responsive transcription factor, Aft1p, has a well established role in regulating iron homeostasis through the transcriptional induction of iron-regulon genes. However, recent studies have implicated Aft1p in other cellular processes independent of iron-regulation such as chromosome stability. In addition, chromosome spreads and two-hybrid data suggest that Aft1p interacts with and co-localizes with kinetochore proteins, however the cellular implications of this have not been established. Here, we demonstrate that Aft1p associates with the kinetochore complex through Iml3p. Furthermore, we show that Aft1p, like Iml3p, is required for the increased association of cohesin with the pericentromere and that aft1Δ cells display sister chromatid cohesion defects in both mitosis and meiosis. Our work defines a new role for Aft1p in the sister chromatid cohesion pathway.
16

Deciphering the Role of Aft1p in Chromosome Stability

Hamza, Akil 25 January 2012 (has links)
The Saccharomyces cerevisiae iron-responsive transcription factor, Aft1p, has a well established role in regulating iron homeostasis through the transcriptional induction of iron-regulon genes. However, recent studies have implicated Aft1p in other cellular processes independent of iron-regulation such as chromosome stability. In addition, chromosome spreads and two-hybrid data suggest that Aft1p interacts with and co-localizes with kinetochore proteins, however the cellular implications of this have not been established. Here, we demonstrate that Aft1p associates with the kinetochore complex through Iml3p. Furthermore, we show that Aft1p, like Iml3p, is required for the increased association of cohesin with the pericentromere and that aft1Δ cells display sister chromatid cohesion defects in both mitosis and meiosis. Our work defines a new role for Aft1p in the sister chromatid cohesion pathway.
17

Functional interactions of chromosome segregation factors with the 2 micron plasmid : possible evolutionary link between the plasmid portioning locus and the budding yeast centromere

Huang, Chu-Chun 01 June 2011 (has links)
The 2 micron plasmid of Saccharomyces cerevisiae is a multi-copy circular DNA genome that resides in the nucleus and exhibits nearly chromosome-like stability in host populations. Several host factors are required for equal plasmid segregation during cell division. One of them is cohesin (a multi-subunit protein complex) which mediates sister chromatid cohesion, a crucial mechanism for faithful segregation of replicated chromosomes in eukaryotes. The 2 micron plasmid mimics chromosomes in assembling cohesin at its partitioning locus. Studies on minichromosomes (centromere containing plasmids) reveal that cohesin forms a ring that embraces replicated sister centromeres topologically rather than physically. The functional similarities between chromosome and plasmid segregation prompted us to examine whether the topological mechanism proposed for centromere-mediated replicative cohesion is also true in the case of the plasmid. In the present study, we have characterized the nature and stoichiometry of cohesin's association with the 2 micron plasmid. Another host factor required for equal plasmid segregation is the CenH3 histone variant Cse4, so far considered to be uniquely associated with centromeric nucleosomes. Cse4 provides an epigenetic landmark at centromeres, and is required for assembly of the kinetochore complex. Surprisingly, Cse4 also interacts with the 2 micron plasmid partitioning locus. We have now functionally characterized this interaction, which can be preserved even in an ectopic, chromosomal context. The steady state level of Cse4 is highly limiting in yeast due to ubiquitin-mediated proteolysis. Only centromere-associated Cse4 is protected from this regulatory turnover control. We find that, in contrast to the situation with centromeres, association of Cse4 with the 2 micron plasmid is highly sub-stoichiometric but still promotes equal plasmid segregation. We also find that Cse4 induces an unusual right handed DNA writhe at the plasmid partitioning locus, as it does at the centromere. Our findings suggest that the plasmid has designed strategies to minimize the utilization of host factors that are in short supply. They signify the advantage of clustering and group behavior in the evolutionary success of a multi-copy selfish genome. Finally, they also suggest the possible emergence of the yeast centromere and the plasmid partitioning locus from a common ancestral sequence. / text
18

Deciphering the Role of Aft1p in Chromosome Stability

Hamza, Akil 25 January 2012 (has links)
The Saccharomyces cerevisiae iron-responsive transcription factor, Aft1p, has a well established role in regulating iron homeostasis through the transcriptional induction of iron-regulon genes. However, recent studies have implicated Aft1p in other cellular processes independent of iron-regulation such as chromosome stability. In addition, chromosome spreads and two-hybrid data suggest that Aft1p interacts with and co-localizes with kinetochore proteins, however the cellular implications of this have not been established. Here, we demonstrate that Aft1p associates with the kinetochore complex through Iml3p. Furthermore, we show that Aft1p, like Iml3p, is required for the increased association of cohesin with the pericentromere and that aft1Δ cells display sister chromatid cohesion defects in both mitosis and meiosis. Our work defines a new role for Aft1p in the sister chromatid cohesion pathway.
19

Investigation of Structure and Function of Esco1 and Esco2 Acetyltransferases

Ajam, Tahereh 22 November 2018 (has links)
No description available.
20

Estudos estruturais de dockerinas e cohesinas em Ruminococcus flavefaciens e sua aplicação no desenvolvimento de matrizes auto montáveis de proteínas / Structural studies of dockerins and cohesins of Ruminococcus flavefaciens and their application in self-assembling arrays of proteins

Gabriel Belem de Andrade 28 June 2017 (has links)
O celulossomo é um complexo multienzimático extracelular utilizado por bactérias anaeróbias para a degradação de biomassa vegetal. Ele é composto por escafoldinas, estruturas alongadas que abrigam diversos módulos cohesina, às quais se ligam dockerinas, seus parceiros de interação específica de alta afinidade, fusionados às enzimas celulolíticas. Os módulos cohesina e dockerina compõem o elemento central da interação entre todos os componentes que integram o celulossomo. Esses módulos são divididos em tipos, de acordo com sua sequência primária. Essa divisão reflete efeitos funcionais distintos, sendo o tipo I responsável pela ligação de enzimas às escafoldinas, enquanto o tipo II medeia a ligação de escafoldinas à célula. O celulossomo de Ruminococcus flavefaciens é o mais complexo conhecido, e na classificação por tipos, suas sequências divergem, formando o tipo III, que foi posteriormente subdividido em 6 grupos para significância funcional. Nesse sistema, o principal responsável pela integração de enzimas ao sistema é a escafoldina primária ScaA, a qual interage com escafoldina adaptadora ScaB. A especificidade dessa ligação - dockerina de ScaA (Rf-DocA) com cohesinas de ScaB (Rf-CohB1-7) - é classificada como único membro do grupo 5, na divisão de grupos que compõem o tipo III. Assim, essa interação é de suma importância para a organização do celulossomo desse organismo, tendo sido estudada por meio de experimentos biofísicos e bioquímicos. Porém a falta de uma estrutura cristalina resolvida desses componentes limita a compreensão que podemos ter sobre a interação. 1-2 Nesse trabalho, apresentamos as estruturas cristalográficas de Rf-DocA, em complexo com a Rf-CohB4, além da estrutura dessa cohesina isolada, e ainda, a Rf-CohB1, e alguns de seus mutantes pontuais. Com isso, esclarecemos aspectos estruturais desses módulos, como a presença de dois sítios funcionais de ligação a cálcio em Rf-DocA. Também é observável pelos modelos gerados, detalhes da ligação entre eles, como os resíduos participantes da interação. Estudos de afinidade entre esses módulos foram conduzidos para a elucidar algumas propriedades da ligação entre esses módulos, de forma que descobrimos que ela ocorre de uma única maneira, e que há um loop na cohesina cuja flexibilidade afeta a afinidade da ligação. Isso sugere um mecanismo de alteração conformacional que regula a ligação à dockerina. Adicionalmente, buscamos o emprego desses módulos em uma aplicação tecnológica, desenhando redes automontáveis de proteínas, visando a construção de um nanomaterial. Essas redes são formadas por características intrínsecas das proteínas que os compõem, sendo o principal fator considerado sua simetria rotacional.3 Nesse sentido, as dockerinas e cohesinas foram utilizadas para ligação entre proteínas de diferentes simetrias. Utilizamos proteínas de simetrias C3, C4 e C6 com fusão a dockerinas, que se conectam às cohesinas fusionadas a proteínas de simetria C2, as quais formam o elemento linear da ligação entre os diferentes módulos. Esse desenho experimental permite a expressão e purificação independentes dos componentes, o que facilita a obtenção das redes, a partir da mistura dos dois componentes. Através de análises preliminares por microscopia eletrônica de transmissão, observamos a formação de filmes bidimensionais extensos e nanotubos com a construção testada. / The cellulosome is an intricate multienzyme extracelular complexes evolved by anaerobic bacteria for degradation of cellulosic biomass. It is composed of scaffoldins, elongated structures, which bare numerous cohesin modules, which bind to dockerin modules, their high affinity and specificity partners, borne by cellulolytic enzymes. The cohesin and dockerina modules constitute the central element of the interaction between every component of the cellulosome. These modules are categorized in types, according to their primary sequence. That distribution reflects distinct functions, in which the type I is responsible for integration of enzymes to scaffoldins, while type II mediates anchoring of scaffoldins to the cell wall. The cellulosome of Ruminococcus flavefaciens is the most intricate known to date, which is categorized into a third type of cohesins and dockerins, due to sequence diversion. The type III was further divided into 6 groups to impart functional significance. In that system, the main enzyme integrating component is the primary scaffoldin ScaA, which interacts to the adaptor scaffoldin ScaB. The specificity of this interaction - dockerina of ScaA (Rf-DocA) to ScaB cohesins (Rf-CohB1-7) - is sorted as a single member of group 5, in the subtypes of type III. Thus, this interaction is essential for cellulosome organization, having been studied by biophysical and biochemical experiments. However, the lack of a solved crystalline structure of these components narrows our understanding on this interaction. In the present study, we present the structures of Rf-DocA, complexed to Rf-CohB4, besides the structure of this isolated cohesin, and also Rf-CohB1 and its point mutants. Due to these data, we clarify structural aspects of these modules, such as the occurrence of two functioning calcium binding sites in Rf-DocA. We also identified details of their binding, such as the interacting residues. Through binding affinity studies, we concluded that the interaction between these modules occurs in a single mode, and that there is a loop in the cohesin module whose flexibility has direct effects on the binding affinity to dockerin. Additionally, we sought to utilize these modules in a downstream application, by designing self-assembling arrays of proteins, aiming for the construction of a nanomaterial. These arrays are constructed from the intrinsic properties of its constituent proteins, in which the main factor is rotational symmetry. In this context, dockerina and cohesin modules were used of binding different symmetry proteins. We utilized C3, C4 and C6 point symmetry proteins fused to dockerin modules, which bind to the cohesin modules fused to C2 point symmetry proteins, which establish the linear connection between the distinct components. This experimental design allows for the independent expression and purification of the components, which facilitates the achievement of the arrays, by simple mixture of the two components. Through preliminary analysis by transmission election microscopy, we observed the construction of two-dimensional films and nanotubes.

Page generated in 0.0269 seconds