• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 89
  • 47
  • 20
  • 8
  • 4
  • 4
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 214
  • 35
  • 32
  • 29
  • 28
  • 19
  • 17
  • 17
  • 16
  • 15
  • 15
  • 14
  • 14
  • 14
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

The Fates of Vanadium and Sulfur Introduced with Petcoke to Lime Kilns

Fan, Xiaofei 31 December 2010 (has links)
Petroleum coke (petcoke) has been burned at kraft pulp mills to partially substitute for natural gas and fuel oil used in lime kilns. Due to the high vanadium and sulfur contents in petcoke, there had been concerns over the impact of burning petcoke on kiln and chemical recovery operations. Laboratory studies were performed to examine the fate of vanadium and sulfur in lime kilns and chemical recovery cycle. The results suggest that most of the vanadium in petcoke quickly forms calcium vanadates with lime in the kiln, mostly 3CaO•V2O5. In the causticizers, calcium vanadates react with Na2CO3 in green liquor to form sodium vanadate (NaVO3). Due to its high solubility, NaVO3 dissolves in the liquor circulating around the chemical recovery system. V becomes enriched in the liquor, leading to vanadium build-up in the system. The S in petcoke would stay in the reburned lime, lower the lime availability, increase SO2 emissions from the kiln stack, alter the S balance, increase the liquor sulphidity, and potentially contribute to ring formation in the kiln.
42

The Fates of Vanadium and Sulfur Introduced with Petcoke to Lime Kilns

Fan, Xiaofei 31 December 2010 (has links)
Petroleum coke (petcoke) has been burned at kraft pulp mills to partially substitute for natural gas and fuel oil used in lime kilns. Due to the high vanadium and sulfur contents in petcoke, there had been concerns over the impact of burning petcoke on kiln and chemical recovery operations. Laboratory studies were performed to examine the fate of vanadium and sulfur in lime kilns and chemical recovery cycle. The results suggest that most of the vanadium in petcoke quickly forms calcium vanadates with lime in the kiln, mostly 3CaO•V2O5. In the causticizers, calcium vanadates react with Na2CO3 in green liquor to form sodium vanadate (NaVO3). Due to its high solubility, NaVO3 dissolves in the liquor circulating around the chemical recovery system. V becomes enriched in the liquor, leading to vanadium build-up in the system. The S in petcoke would stay in the reburned lime, lower the lime availability, increase SO2 emissions from the kiln stack, alter the S balance, increase the liquor sulphidity, and potentially contribute to ring formation in the kiln.
43

Adsorptive removal of nitrogen from coal-based needle coke feedstocks using activated carbon

Madala, Sreeja. January 1900 (has links)
Thesis (M.S.)--West Virginia University, 2009. / Title from document title page. Document formatted into pages; contains viii, 64 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 62-64).
44

Entrained Flow Gasification of Oil Sand Coke

Vejahati, Farshid Unknown Date
No description available.
45

Co-gasification of biomass with coal and oil sands coke in a drop tube furnace

Gao, Chen Unknown Date
No description available.
46

Experimental study of elastoplastic mechanical properties of coke drum materials

Chen, Jie Unknown Date
No description available.
47

Activation of Delayed and Fluid Petroleum Coke for the Adsorption and Removal of Naphthenic Acids from Oil Sands Tailings Pond Water

Small, Christina Unknown Date
No description available.
48

Microwave heating for adsorbents regeneration and oil sands coke activation

Chen, Heng Unknown Date
No description available.
49

The structure and strength of metallurgical coke

Moreland, Angela January 1990 (has links)
This study aimed to investigate the relationship between the tensile strength of metallurgical coke and both the textural composition of the carbon matrix and the porous structure of the coke, and further to assess the use of these structural features as bases of methods of coke strength prediction. The forty-four cokes examined were produced in a small pilot-oven from blended-coal charges based on six coals differing widely in rank. Their textural composition was assessed by incident polarized-light microscopy while pore structural parameters were measured by computerized image analysis allied to reflected light microscopy. The tensile strength of coke could be related to textural data with accuracy using several relationships, some of which were based on a model for the tensile failure of coke. Relationships between tensile strength and pore sturctural parameters were less successful, possibly because of difficulties associated with the measuring system used. Neverthless relationships involving combinations of pore structural and textural data were developed and investigated. It was shown that relationships between tensile strength and calculated textural data had promise as the basis of a method of coke strength prediction. Also, tensile strengths could be calculated from the blend composition and the tensile strength of the coke produced from component cokes. Both methods have value in different situations.
50

Activation of Delayed and Fluid Petroleum Coke for the Adsorption and Removal of Naphthenic Acids from Oil Sands Tailings Pond Water

Small, Christina 06 1900 (has links)
Oil sands companies produce substantial quantities of tailings known to contain high concentrations of dissolved organic by-products. The use of petroleum coke was proposed as a potential adsorbent for organic contaminant removal from tailings pond water. Physical activation was used to create a greater surface area and porosity within the delayed and fluid coke. Increased temperature (900oC), steam rate (0.5 mL/min), and activated time (6 h) led to high iodine numbers of 670 and 620 mg/g for activated delayed and fluid cokes, respectively. For both best activated cokes, the micropore to mesopore ratio was approximately 50:50. When 5 g/L of activated delayed and fluid cokes were added to the tailings water, 91% of the dissolved organic carbon and 92% of the naphthenic acids were removed. Such analyses indicate that an oil sands waste by-product can be used to treat tailings pond water to remove toxic and corrosive organic contaminants. / Geoenvironmental Engineering

Page generated in 0.0312 seconds