• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Cold In-Place Recycling Characterization Framework for Single or Multiple Component Binder Systems

Cox, Ben C 11 December 2015 (has links)
Cold in-place recycling (CIR) is a pavement rehabilitation technique which has gained momentum in recent years. This momentum is due partly to its economic and sustainability characteristics, which has led to CIR market expansion. When pavement network deterioration is considered alongside increasing material costs, it is not beyond reason to expect demands on CIR to continue to increase. Historically, single component binder (SCB) systems, those with one stabilization binder (or two if the secondary binder dosage is 1% or less), have dominated the CIR market and could be considered the general state of practice. Common stabilization binders are either bituminous or cementitious. Two example SCB systems would be: 1) 3% portland cement, or 2) 3% asphalt emulsion with 1% hydrated lime. While traditional SCB systems have demonstrated positive economic and sustainability impacts, this dissertation focuses on multiple component binder (MCB) systems (bituminous and cementitious combined) which exhibit the potential to provide better overall economics and performance. Use of MCBs has the potential to alleviate SCB issues to some extent (e.g. cracking with cementitious SCBs, rutting with bituminous SCBs). Furthermore, to fairly represent both binders in an MCB system a universal design method which can accommodate multiple binder types is needed. The main objectives of this dissertation are to develop a universal CIR design framework and, using this framework, characterize multiple SCB and MCB systems. Approximately 1500 CIR specimens were tested herein along with approximately 300 asphalt concrete specimens which serve as a reference data set for CIR characterization. A case study of a high-traffic Mississippi CIR project which included cement SCB and emulsion SCB sections is also presented to support laboratory efforts. Individual components needed to comprise a universal design framework, such as curing protocols, were developed. SCB and MCB characterization indicated that cement SCBs yielded low cracking resistance, high rutting resistance, and lower costs. Emulsion SCBs yielded the opposite. MCBs demonstrated the ability to balance rutting, cracking, and economics. Overall, the universal framework presented appears promising as it could offer agencies flexibility and, in some cases, improved overall performance beyond that of current SCB design methods.
2

COLD IN-PLACE RECYCLING WITH EXPANDED ASPHALT MIX (CIREAM)

Abiodun, Samuel 16 April 2014 (has links)
Cold in-place recycling with expanded asphalt mix (CIREAM) has become an accepted road rehabilitation technique in Ontario and other parts of the world given its advantages over regular cold in-place recycling (CIR) and other methods. Although CIREAM offers early strength advantages and extended paving periods among other benefits, late season CIREAM can be burdened by distresses such as ravelling, potholing and other moisture-induced damage. Limited information on the behaviour and failure mechanisms of CIREAM has also hindered its utilization in spite of the numerous benefits. This research investigated effects of additives on foam properties of roofing asphalt flux (RAF) binder in order to evaluate the suitability of the binder for CIREAM. The study also investigated how mixture variables and test protocols affect performance properties that relate to early strength and moisture resistance of CIREAM versus CIR. Indirect tensile strength testing with moisture conditioning was used to assess the effects of asphalt cement type (80, 300 pen grades and polymer modified asphalt), conditioning time, and additives such as Portland cement, foam stabilizers, polymers and fibers. Uniaxial cyclic compression with partial confinement was used to assess effect of additives on deformation resistance of recycled mixes. Although a siloxane-based stabilizer significantly improved the stability of RAF foam, the binder may not be suitable for CIREAM due to its limited expansion. The optimum binder content was found to be around 2 percent, which is significantly higher than the minimum 1 percent currently used in Ontario. Both Portland cement and the siloxane additive exerted significant positive effects on strength behaviour and moisture resistance of the recycled mixes. In regular CIR mixes, 2 percent binder content gave desirable early strength and strain performance compared to 1 percent. Application of controlled amounts of additives (e.g. Portland cement, foam stabilizers) and case-by-case evaluation can improve the performance properties of CIREAM and address the associated problems. The entire research effort described in this thesis was designed to provide advice on potential improvements in the CIREAM process as it is currently carried out in Ontario, and also help in developing quality control standards in CIREAM and other cold mix processes. / Thesis (Master, Chemistry) -- Queen's University, 2014-04-16 08:42:24.313
3

Quantifying the Service Life and Potential Environmental Benefits of Recycled Asphalt Pavements

Amarh, Eugene A. 14 September 2021 (has links)
In-service pavements require maintenance and rehabilitation (MandR) interventions to keep them in compliance with structural and functional standards. With the increased focus on the sustainability of our roadway systems, it has become important to document the cost and environmental impacts of different MandR strategies over the life cycle of the pavement to facilitate project selection decisions in the future. Asphalt pavement recycling, while cost-effective and environmentally friendly compared to other traditional MandR treatments, still faces some widespread implementation push-back, leading to policy enactments by the FHWA aimed at encouraging the use of recycling in road projects. Many agencies and contractors have cited the lack of project selection criteria, and uncertainty about long-term performance of these recycling alternatives as reasons impeding rapid implementation of these treatments in road projects. One of the gray areas of the FHWA's 2015 Recycled Material Policy in project selection was, until recently, the lack of guidelines or tools for the assessment of the environmental suitability of candidate MandR treatments. Today, it is almost impossible to evaluate the environmental suitability of various recycling-based end-of-service-life treatments because available databases do not have relevant information on the details of unit processes, construction equipment and activities, and use-stage roughness data. Development of future MandR plans throughout the service life of pavements rehabilitated with recycling-based treatments is somewhat limited as deterioration is not fully understood. Also, available modeling tools no not address all LCA phases, or in cases where they do, key life cycle phases including the MandR, and use phases are not well covered due to the lack of quantification highlighted earlier. To address the highlighted concerns, this dissertation developed a user-friendly comprehensive LCA tool that was further validated with a case study to quantify the service life (when the pavement has reached a critical threshold performance value) and potential environmental benefits of pavement recycling projects executed by the Virginia Department of Transportation over the past decade. The tool, pySuPave, includes an excel spreadsheet user-inputs interface, and database of economic flows for unit processes used in the production of pavement materials and subsequent construction of the pavement system, considering transportation of materials and construction machinery to plants and construction site. A python-based program was used to perform matrix-based computations to generate the environmental burdens from the available public LCA Ecoinvent database. A substantive part of the dissertation was dedicated to evaluating the performance of in-service pavements rehabilitated with cold recycling and full-depth reclamation treatments, focusing on developing pavement performance prediction models (PPPM) that goes on to improve modelling of the MandR and use stages in the pavement LCA and ultimately bridges the knowledge gap on how these treatments perform in the long term. This part of the dissertation was presented in two chapters; trends in pavement recycling and performance data collection, and development of PPPMs for recycled asphalt pavements. The first provides an update and examines the current state of pavement recycling techniques, highlighting trends in the various recycling methods, examining what is and is not working from the agency perspective, and assessing the progress made in the last decade through a web-based survey. The survey results did not indicate significant changes in the adoption of the asphalt pavement recycling concept in the last decade. However, recycling techniques, such as hot in-place recycling, are being used less and more agencies seem to be adopting lower temperature techniques such as cold in-place recycling, cold central plant recycling and full depth reclamation. Improvements in mix design methods were noticeable, as more agencies have adopted contemporary methods, such as the Superpave design. Among states, very few agencies collected performance data for completed asphalt pavement recycling projects. The second chapter on performance focused on developing individual and family-type PPPMs from the data collected from the states of Virginia and Colorado, respectively. While regression modeling forms the backbone of the approach used, the chapter also presents an approach to developing family-type models using functional data analysis to find groups of projects with similar deterioration trends. In the case of Colorado, cold in-place recycling (CIR) projects completed with an initial IRI between 71 and 91 in/mi are most likely to deteriorate at an average group rate of 1.37 in/mi/year. Similarly, full depth reclamation (FDR) projects will most likely deteriorate following an average group rate of 1.40 in/mi/yr, with an initial IRI between 52 and 70 in/mi. These projects will stay in service well over 30 years if a threshold IRI of 140 in/mi were used a failure criterion. For the individual roughness models developed for VDOT, the initial IRI values and the rate of change for the treatments analyzed were found to range between 48 and 85 in/mi and between 0.70 and 5.20 in/mi/year, respectively, depending on the recycling method and type of stabilization treatment. Finally, a context-based life cycle assessment case study was conducted to benchmark and compare the environmental impacts associated with rehabilitating a low-volume road with various recycled-based and equivalent conventional methods. Several impact indicators were assessed but only the global warming (GW) score and the single score index that combines all the environmental impact indicators into a single number using normalization and weighting factors were reported in this study for the sake of brevity. Four restorative maintenance projects including two CIR (4-in. HMA over a 5-in. CIR with foamed asphalt and emulsion stabilization), one cold central plant recycling (CCPR): 4-in. HMA over a 5-in. foamed asphalt CCPR (CCPR FA), and one non-recycling structural overlay (8-in. HMA over an existing pavement) were evaluated. In addition, the following reconstruction projects were assessed; two FDR (4-in. HMA over a 12-in. FDR with foamed asphalt with 1% cement additive, and a 4-in. HMA over 10.5-in. cement stabilized FDR), and a non-recycling reconstruction project (a new reconstruction project with 8-in. HMA over a 16-in. aggregate base and subbase). The functional unit was a two lane-mile length, 12 feet wide project with a traffic volume of 1000 vehicles (3% trucks) and the analysis was conducted for 50 years. The GW score and a few other impact indicators showed an increase in the observed results where cement is used as a main stabilizer or as an additive. Between the asphalt stabilized projects, the difference in impact scores is only seen when cement is used as an additive as highlighted in the case of foamed asphalt applications. Even for the low-volume road under study, the use stage contributes the largest share to global warming and is—among several factors—attributed to the initial surface roughness of completed projects. Thus, for state DOTs looking to reduce the environmental footprints for road infrastructure projects and achieve federal legislative goals, building smoother roads and taking steps to keep the annual deterioration rate low would be an important measure, in addition to pavement recycling. Comparing the projects based on the overall single score derived from weighting factors from the National Institute of Standards and Technology (NIST) ranks the projects as follows (listed in order decreasing impacts per rehabilitation category); restorative maintenance projects: T. OVERLAY (non-recycling structural overlay—8 in. HMA over an existing pavement) - 1.06 pts, CCPR FA (4 in. HMA over a 5 in. cold central plant recycling with foamed asphalt) - 1.02 pts, CIR FA (4 in. HMA over a 5 in. cold in-place recycling with foamed asphalt) - 1.00 pts, CIR AE (4 in. HMA over a 5 in. cold in-place recycling with emulsion)- 0.86 pts; reconstruction projects: RECONS (a new reconstruction project—8 in. HMA over a 16 in. aggregate base and subbase) -1.42 pts, FDR FA+C (4 in. HMA over a 12 in. FDR with foamed asphalt with 1% cement additive) - 1.15 pts, FDR C (4 in. HMA over 10.5 in. cement stabilized FDR) - 1.02 pts. / Doctor of Philosophy / Due to harsh environmental conditions and continual damage from moving traffic, highway pavements or roadways deteriorate and grow weak over time. Throughout their life in service, different maintenance and rehabilitation (MandR) activities are performed with the intention of slowing down the deterioration to always keep the highway at a certain level of service to road users. For a long time, these MandR activities have included the use of virgin materials in techniques ranging from minor treatment applications such as fog seals, chip seals, thin overlays through more heavy treatments such as mill and fills, thicker overlays all the way to total reconstruction. Other MandR alternatives include pavement recycling which reuses materials from the existing distressed roadways either in-place or at a nearby mobile plant have gained popularity among several state highway agencies over the last decade. The advantages of using the recycling alternatives compared to non-recycling options are many and have been known to include cost savings, less construction time, and low environmental footprint. Many highway agencies, however, have expressed the lack of information on project selection criteria and the uncertainty about long-term performance of these recycling alternatives as reasons impeding rapid and widespread implementation in road projects. Agencies need selection criteria to help them identify the right treatments to apply to the right road at the right time. In a bid to encourage the use of pavement recycling treatments, the Federal Highway Administration (FHWA) enacted the Recycled Materials Policy in 2006 (revised 2015) but the policy did not fully address certain aspects of project selection. Directives on assessing the environmental suitability of recycling projects, for instance, was not given. There are no tools with modern databases incorporating the various unit processes for pavement recycling to aid agencies carry out this environmental assessment. To address the highlighted concerns, we developed a user-friendly comprehensive environmental assessment tool called pySuPave as part of this dissertation. We later validated the tool with a case study to quantify the potential environmental benefits of pavement recycling projects executed by the Virginia Department of Transportation over the past decade. Next, we conducted a survey of the departments of transportation (DOT) around the United States and Canada to collect performance data from agencies with active in-place recycling programs. Approximately 18% of the DOTs surveyed were able to provide performance data. Data received from Colorado and Virginia were subsequently used to developed models to predict deterioration in recycled pavements. In the case of Colorado, CIR projects completed with an initial roughness (IRI) between 71 and 91 in/mi are most likely to deteriorate at a rate of 1.37 in/mi/year. Similarly, FDR projects will most likely deteriorate following an average group rate of 1.40 in/mi/yr, with an initial IRI between 52 and 70 in/mi. These projects will stay in service well over 30 years if a threshold IRI of 140 in/mi were used a failure criterion. For the individual roughness models developed for VDOT, the initial IRI values and the rate of change for the treatments analyzed were found to range between 48 and 85 in/mi and between 0.70 and 5.20 in/mi/year, respectively, depending on the recycling method and type of stabilization treatment Finally, we conducted an environmental assessment case study to benchmark and compare the environmental burdens i.e., global warming (GW) and other impacts associated with rehabilitating a low-volume road with various recycled-based and equivalent non-recycling methods. Four restorative maintenance projects including two CIR (4-in. HMA over a 5-in. CIR with foamed asphalt and emulsion stabilization), one CCPR (4-in. HMA over a 5-in. foamed asphalt CCPR [CCPR FA]), and one non-recycling structural overlay (8-in. HMA over an existing pavement) were evaluate. In addition, the following reconstruction projects were assessed; two FDR (4-in. HMA over a 12-in. FDR with foamed asphalt with 1% cement additive, and a 4-in. HMA over 10.5-in. cement stabilized FDR), and a non-recycling reconstruction project (a new reconstruction project with 8-in. HMA over a 16-in. aggregate base and subbase). The functional unit was a two lane-mile length, 12 feet wide project with a traffic volume of 1000 vehicles (3% trucks) and the analysis was conducted for 50 years. The study results showed that the recycling-based projects had lower overall environmental burdens compared to their equivalent non-recycling alternatives. The GW score and a few other environmental impact indicators were higher when cement is used as a main stabilizer or as an additive in the recycling projects. Between the asphalt stabilized recycling projects, the difference in impact scores is only seen when cement is used as an additive as emphasized in the case of foamed asphalt applications. Even for the low-volume roads under study, the use stage (when the project is open to road-users) in the pavement life cycle contributes the largest share to global warming and is—among several factors—attributed to the initial surface roughness of completed projects. Thus, for state DOTs looking to reduce the environmental footprints for road infrastructure projects and achieve federal legislative goals, building smoother roads and taking steps to keep the annual deterioration rate low would be an important measure, in addition to pavement recycling. The results from this research support the hypothesis that pavement recycling can reduce global warming and other environmental burdens compared to non-recycling methods. Therefore, agencies should encourage more pavement recycling programs.
4

In-Situ Recycling: Applications, Guidelines, and Case Study for Local Governments

Bartku, Elaine Cleare 23 July 2014 (has links)
This thesis investigates the application of In-Situ Recycling and provides guidelines for localities to aid in the selection of recycling methods, as well as documents a local government's experience with Cold In-Place Recycling. The recycling methods discussed in this study include Cold In-Place Recycling (CIR), Hot In-Place Recycling (HIR), and Full Depth Reclamation (FDR). These methods are performed onsite and in-place in a continuous process of milling, mixing, and placement. The In-Situ Recycling guidelines include suggestions based on: traffic characteristics, existing road condition, distress types, road access, local climate, road geometry, and other road characteristics. The guidelines are based on information from sources including NCHRP Synthesis 421, American Recycling and Reclamation Association (ARRA), FHWA, and state agencies with recycling experience. This study also resulted in documenting obstacles that localities may face when in-situ recycling, as well as the impact of limited experience with recycling. The study also evaluated the construction of Cold In-Place Recycled pavement sections in Christiansburg, VA, using Falling Weight Deflectometer (FWD) and Ground Penetrating Radar (GPR). Additionally, using the FWD and GPR data, alternate recycled designs were proposed in addition to a cost comparison to a conventional design. / Master of Science

Page generated in 0.404 seconds