• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Relationship Between Structural and Tectonic Evolution and Mineralization at the Coles Hill Uranium Deposit, Pittsylvania County, Virginia

Wyatt, John Guthrie 22 October 2009 (has links)
The role of structure and tectonics in the formation of hydrothermal ore deposits and the localization of high-grade mineralization associated with fractures is well documented. In this study we have characterized the structural setting associated with uranium mineralization in the Coles Hill uranium deposit by relating the observed metamorphic and structural features (mylonitic foliation and fractures) to regional tectonic activity. Drill cores and outcrops observed in this study show that NE/SW oriented fractures appear to be related to Mesozoic movement along the Chatham Fault. NW/SE oriented fractures cross cut and offset the NE/SW oriented fractures by1 to 2 cm and therefore post-date the NE/SW oriented fractures. NW/SE fracture orientations and parallel to the NW/SE regional cross faults and are suggested to relate to the formation of the cross faults during post Triassic basin inversion. Uranium mineralization is located within horizontal to shallowly dipping fractures suggesting uplift and erosion to form possible tension veins. The cross faults with NW/SE orientations created pathways in which uranium bearing hydrothermal fluids could migrate from the Triassic basin shales westward into the adjacent highly fractured crystalline rocks, precipitating uranium due to oxidation-reduction reactions. / Master of Science
2

Hydrologic Modeling of a Probable Maximum Precipitation Event Using HEC-HMS and GIS Models - A Case Study of Two Watersheds in Southern Virginia-

Kingston, William John III 25 July 2012 (has links)
Presented in this thesis is a case study of two study watersheds located in south central Virginia. For each, a HEC-HMS event-based hydrologic model was constructed to simulate the rainfall-runoff response from the Probable Maximum Storm (PMS), the theoretical worst-case meteorological event that is capable of occurring over a particular region. The primary goal of these simulations was to obtain discharge hydrographs associated with the Probable Maximum Flood (PMF) at key locations in each of the watersheds. These hydrographs were subsequently used to develop flood inundation maps of the study areas and to characterize sediment transport phenomena in the study reaches under severe flooding conditions. To build the hydrologic basin models, ArcHydro, HEC-GeoHMS and ArcGIS were employed to assimilate the substantial amount of input data and to extract the pertinent modeling parameters required for the selected simulation methods. In this, the SCS Loss and Transform Methods, along with the Muskingum Routing Method, were adopted for the HEC-HMS simulations. Once completed, the basin models were calibrated through a comparison of simulated design storm flows to frequency discharge estimates obtained with regional regression techniques and a flood frequency analysis. The models were then used to simulate their respective PMS events, which were developed following recommendations from the Hydrometeorological Branch of the National Weather Service and the U.S. Army Corps of Engineers. Descriptions of each of the study sites, explanations of the modeling theory and development methodologies, and discussions of the modeling results are all detailed within. / Master of Science
3

Hydraulic Modeling of a River Network for Predicting Flood Inundation using HEC-RAS and GIS Models - A Case Study in Southern Virginia

Castro Bolinaga, Celso Francisco 17 December 2012 (has links)
A flood inundation study is presented for a watershed located in south central Virginia. A HEC-RAS hydrodynamic model of the main river network was developed to assess the impact of a number of hydrologic events, including the Probable Maximum Flood (PMF), in the area of interest. The primary goal of the study was to transform discharge hydrographs produced by HEC-HMS, an event-based hydrologic model, into water surface elevations and flood inundation spatial extents. Initially, a river terrain model was constructed using data from publicly available sources and filed survey campaigns. HEC-GeoRAS and ArcGIS were used to document and integrate the considerable amount of data required for building the model. Then, a calibration process was performed using stage-discharge predictor curves. The HEC-RAS unsteady flow component was employed for routing the discharge hydrographs through the modeled river network. Flood inundation maps, as well as longitudinal water surface elevation and channel velocity profiles were generated for the study reaches. As part of the flood inundation study, an uncertainty quantification analysis was carried out on the boundary roughness of the floodplains. The objective was to measure the extent to which flood inundated areas, water surface elevations, and channel velocities were influenced by variations on this empirically-based model coefficient. Finally, the impact of various hydraulic characteristics of the modeled river on the sediment transport process is examined. This characterization is intended to provide a better understanding of a subsequent sediment transport modeling effort to be performed under severe flooding conditions. / Master of Science
4

Statistical Analysis of the Environmental Geochemistry of an Unmined Uranium Ore Deposit

Levitan, Denise Madeline 13 August 2014 (has links)
An evaluation of the geochemistry of the environment prior to large-scale changes enables scientists and other stakeholders to assess both baseline conditions and the potential impact of those changes to the environment. One area in which documentation of pre-development geochemistry is particularly important is in the exploitation of ore deposits. Ore deposits consist of concentrations of elements or minerals that are enriched enough to be of potential economic value. Their unusual geochemistry often leaves a signature on the environment that can both aid in location an economic resource and present environmental management challenges during its lifecycle. Coles Hill, Virginia, represents one such site. The Coles Hill property is the location of uranium-enriched rock, commonly referred to as the Coles Hill uranium deposit. This dissertation outlines study design, sampling, and statistical analysis methods that can be used in the geochemical characterization of a potential resource extraction site. It presents three studies on geoenvironmental media at Coles Hill. The first study discusses sampling strategies and statistical analysis to address variability in geology, hydrology and climate for baseline assessment and presents an example of such an assessment at Coles Hill. Results suggest a localized environmental impact of the deposit but that differences in bedrock geology within the area surrounding the deposit could also be responsible for some of the variation. This study also emphasizes the importance of consideration of data below analytical detection limits and describes methods for doing so. The second study compares the geochemistry of soil samples collected at Coles Hill with reference data collected by the U.S. Geological Survey using multivariate statistical techniques. Differences are used to suggest potential pathfinder elements such as light rare earth elements to aid in exploration for similar deposits. The third study uses multivariate statistical analysis to examine differences among rocks, soils, and stream sediments to infer important geochemical processes involved in weathering of the deposit. Overall, the results of these studies can aid in the development of future environmental site studies at Coles Hill and elsewhere. / Ph. D.

Page generated in 0.0509 seconds